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Abstract—The risk analysis is an important process for en-
forcing and strengthening efficient and effective security. Due
to the significant growth of the Internet, application services,
and associated security attacks, information professionals face
challenges in assessing risk of their networks. The assessment
of risk may vary with the enterprise’s requirements. Hence, a
generic risk analysis technique is suitable. Moreover, configuring
a network with correct security policy is a difficult problem. The
assessment of risk aids in realizing necessary security policy. Risk
is a function of security threat and impact. Security threats de-
pend on the traffic reachability. Security devices like firewalls are
used to selectively allow or deny traffic. However, the connection
between the network risk and the security policy is not easy to
establish. A small modification in the network topology or in
the security policy, can change the risk significantly. It is hard to
manually follow a systematic process for configuring the network
towards security hardening. Hence, an automatic generation of
proper security controls, e.g., firewall rules and host placements
in the network topology, is crucial to keep the overall security
risk low. In this paper, we first present a declarative model for
the qualitative risk analysis. We consider transitive reachability,
i.e., reachability considering one or more intermediate hosts, in
order to compute exposure of vulnerabilities. Next, we formalize
our risk analysis model and the security requirements as a
constraint satisfaction problem using the satisfiability modulo
theories (SMT). A solution to the problem synthesizes necessary
firewall policies and host placements. We also evaluate the
scalability of the proposed risk analysis technique as well as
the synthesis model.

I. INTRODUCTION

Today information security has become very crucial to an
organization for the successful operations of different mission
critical applications. Risk management plays a critical role in
protecting an organization’s information assets from security
risks [1][2]. Correct risk analysis techniques are important for
adopting appropriate countermeasures against different secu-
rity threats to the organizational resources. The ever-changing
views of threats and vulnerabilities make the understanding
of risk, its analysis and management difficult. Therefore, it is
essential to develop an efficient risk analysis tool that can cope
with the changes in risk-understanding and can also assist the
IT professionals in sharing simple and comprehensive view of
potential risks according to different missions.

Most of the organizations emphasize enforcement of the
security constraints, but they suffer from resource limitations.
Hence, it is important to find the network configuration
within this limited resource, which offers expected security
performance. Providing a stronger security in a network by
exploring potential risk as well as resolving the contention

between the security and business constraints (i.e., connectivity
requirements) is an important but challenging problem.
Contribution. Our contribution in this paper is twofold:

e Qualitative risk analysis. Given the vulnerability and
assets of the host, and the network topology, we present
the qualitative risk analysis using declarative logic. We
consider reachability between the hosts in order to use
attack paths in threat computation.

o Synthesis of firewall policies and host placements consid-
ering constraints on risk. We We present an approach of
synthesizing firewall policies and host placements in the
network topology that satisfy reachability requirements
and one or more risk-based constraints. A risk-based con-
straint can set a limit on the overall risk of the network or
it can be based on a risk mitigation policy. We formulate
the synthesis problem as a constraint satisfaction problem
using the satisfiability modulo theories (SMT).

The justification of using declarative logic and SMT in this
research follows from their utilities. Declarative logic (e.g.,
Prolog [14]) gained its popularity because of two reasons: flex-
ibility and expressiveness. In order to have the ability to cope
with the changes of risk concept, declarative language is an
easy choice for the modeling. Over a decade, SMT has proved
very useful for modelbased testing and automated synthesis
and planning. Modern SMT solvers can check formulas with
thousands of variables, and millions of logical clauses [16].
Uninterpreted function is one of the major attractions of SMT.
In most cases, the predicates used in declarative logic are easy
to convert in SMT using uninterpreted functions.

The rest of this paper is organized as follows. In Section II,
we present the declarative risk analysis. In that section, we
also present the evaluation of the risk analysis technique. In
Section III, we describe the synthesis of firewall policies and
host placements. In Section IV, we discuss the related work.
In Section V, we conclude the paper.

II. RISK ANALYSIS

The risk of a host is considered as a function of impact
and threat [1][2]. Potential security threat that a host may face
depends on the exposure of its vulnerabilities. We use the term
exposure for characterizing possible attack paths to a host. A
number of matrices are used to qualitatively define different
parameters towards the risk assessment. The use of these
matrices in the risk analysis process is shown in Fig. 1.We
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Fig. 1. The uses of matrices in the risk analysis process.
start this section with a very brief discussion about the traffic
reachability model, which is similar to [3].

A. Network configuration

Each participant in a network is a node. Usually, a
node can be either a host or a router. We define two
predicates: host (N) and router (N), to denote a node
N as a host or a router, respectively. The predicate
link (N, N2) signifies that a node N is physically connected
to a node N2. We write a traffic flow in the form of
’<source,destination, service>’ (i.e., <S,D, Sv>).
Each router maintains a routing table and the predicate
forward (N, S,D, Sv, T) specifies that the router N for-
wards the traffic <S, D, Sv> to the next hop T. We consider
firewalls as security enforcement devices in the network. A
firewall checks the incoming traffic and forwards the traf-
fic to the next hop according to its policy. The predicate
firewall (N) denotes that the node N is a firewall. The
predicate firewallAllow (N, S,D, Sv) specifies that the
firewall N allows the traffic <S,D, Sv> to its destination.
The predicate canReach (S, D, Sv) finds whether the traffic
<S, D, Sv> is reachable from its source to the destination. We
also define reachable (S,D) from canReach(S,D,_)
to find the traffic reachability from the source to the destination
irrespective of the service.

B. Impact and Vulnerability

We define the vulnerability of a host qualitatively, e.g., high,
medium, and low, according to the CVSS scores of the host’s
vulnerabilities [9]. The CVSS scores are given in an integer
scale of 0—10. A host may have different vulnerabilities which
usually have different CVSS scores. We take the highest score
for defining the vulnerability of the host.

The impact of a host refers to the potential magnitude
of the damage if an attack is launched against it. Here, we
measure impact, simply, based on the asset value of a host.
The asset value of a host represents its importance based on the
organizational requirements. These asset values are assumed
to be normalized in an integer scale of 0 — 10. We define
the predicate hostInfo (N,V,A) to express the highest
vulnerability score (V) and the asset value (&) of a host N.

A vulnerability type T is defined using the predicate
vulnModel (T, Mn,Mx), i.e, if the vulnerability score is
within a semi-open range [VMn, VMx), the vulnerability type
is T. The predicate vulnerability (N, T) finds the vul-
nerability type T of a host N. The model for vulnerability
computation is presented in Listing 1, where we take high,
medium and low as the vulnerability types. The predicate
vulnModel (T, VMn, VMx) is used to map the vulnerability
score to a qualitative type.
vulnModel (high ,7 ,10).

vulnModel (medium ,4 ,6).
vulnModel (low ,0 ,3).

vulnerability (N, T):—
vulnModel (T,Mn,Mx), hostInfo (N,V,_),V>=Mn, V<Mx.

Listing 1. Vulnerability measure

Similar to the vulnerability modeling, we measure the
impact type T of a host N using the predicate impact (N, T)
from the asset value. We use the predicate impactModel to
map the asset value to a qualitative type.

C. Exposure

We derive a query to find the transitive exploitation of a
host’s vulnerability from another host based on reachability. It
means that exploitation of a vulnerability of a host can cause
exploitation of a vulnerability of another host.

findVulnTransition (S,D,_,K,[D]): —
K>=0,malicious (S),reachable (S,D),
finqulnTransition(S,D,PF,K,[D\P]):—
K>0,not(reachable (S,D)), host(N),
not (member(N,PF)),reachable (N,D), K2 is K-—1,
findVulnTransition (N,D,[N|PF],K2,P).

vulnTransition (S,D,K,P): —
findVulnTransition (S,D,[S,D],K,P).

Listing 2. Transitive exploitation of vulnerability

We define transitive exploitation of vulnerability (see List-
ing 2) from a host S to a host D as ‘S can reach D in one
or more steps. For example, S can exploit a vulnerability
in a host N, while N can exploit a vulnerability in D; i.e.,
S can transitively exploit a vulnerability in D in two steps.
The query vulnTransition(S,D,K,P) finds if S can
exploit a vulnerability in D taking at most K steps. P shows the
attack paths. Our query implementation is loop-free. Predicate
findvulnTransition captures the transitive path exclud-
ing the hosts in PF and considering remaining steps K. Query
vulnTransition invokes findvulnTransition with
PF as empty. The query allvulnSrc (D, K, SL) finds the
list of sources SL that can exploit vulnerabilities in D, taking
at most K steps.

The exposure of a host is the qualitative measurement of
the extent to which the host is exposed to, i.e., reachable
by other (potential malicious/compromised) hosts (e.g. the
Internet). The potential propagation of exploitation from a host
to another host is expressed by the exposure. The number
of steps (i.e., the number of intermediate hosts) required for



TABLE I
AN EXAMPLE OF EXPOSURE DEPTH DEFINITION MATRIX

Path security
ipsec ids none
Qualitative steps low low medium high
of vulnerability medium low low medium
transition high low low low
TABLE I
AN EXAMPLE OF QUALITATIVE EXPOSURE DEFINITION MATRIX
Qualitative exposure dimension
high medium low
Qualitative high high high high
exposure medium high medium | medium
depth low medium low low

the vulnerability transition has an effect on the exposure,
i.e., the more steps that are required by a malicious host,
the less is the possibility of exploitation. We calculate the
exposure of a host considering two metrics: exposure depth
and exposure dimension. Exposure depth of a host is computed
from two parameters: (i) the qualitative steps that a malicious
host requires to reach it, and (ii) the security properties
(i.e., existence of IPSec, IDS, etc.) of the communication
path between them. The definition of an exposure depth
type follows from the matrix as shown in Table 1. Exposure
dimension of a host is the number of other hosts that can reach
this host. An exposure type is defined from the qualitative
types of exposure depth and exposure dimension. We define
exposure using the predicate exposureModel, which
resembles each element of the matrix, as shown in Table II,
generated from exposure depth types (in rows) and exposure
dimension types (in columns). We take the same qualitative
types, high, medium, and 1ow, for all of these metrics.

getExposureDimension (N,ES): —
maxExposurelndirection (K);
allVulnSrc (N,K,L),length (L,ES).

getExposureDepth (N,EE,P): —
maxExposurelndirection (K) ,EE<=K,
malicious(S), vulnTransition (S,N,EE,P),
not(getExposureDepth (N,EE2) ,EE2<EE).

hasExposure (N,EDT,EST): —
getExposureDimension (N,ES),
getExposureDepth (N,EE,P),
exposureStepModel (EET,EEMn, EEMx) ,
EE>=EEMn, EE<EEMx, pathSecurity (P,PT),
exposureDepthModel (EDT,EET,PT),
exposureDimensionModel (EST,ESMn, ESMx) ,
ES>=ESMn, ES<ESMXx .

exposure (N,T): —
exposureModel (T,EDT,EST),
hasExposure (N,EDT,EST).

Listing 3. Qualitative exposure measure

The predicate exposureModel (T,EDT,EST) specifies
that when the exposure depth type is EDT and the exposure
dimension type is EST, the exposure type is T. The predicate
hasExposure (N, EDT, EST) finds EDT and EST of the
host N. The predicate getExposureDimension (N,ES)
finds the number of hosts ES that can reach N. The predi-

TABLE III
AN EXAMPLE OF QUALITATIVE THREAT DEFINITION MATRIX

Qualitative vulnerability
high medium low
Qualitative hi gh hi gh hlgh medium
medium | medium | medium low
exposure -
low medium low low
TABLE IV
AN EXAMPLE OF QUALITATIVE RISK DEFINITION MATRIX
Qualitative impact
high medium low
Qualitative hi gh hf gh hlgh medium
threat medium high medium low
low medium low low

cate getExposureDepth (N, EE, P) finds the exploitation
steps EE and the path quality P. The maximum number of
steps to be considered for vulnerability transition is bounded
by maxExposureStep. The predicate exposure (N, T)
finds the exposure type T of a host N.

D. Threat

A threat type is defined from the qualitative exposure type
and the qualitative vulnerability type of a host. The predicate
threatModel (T,ET,VT) defines the threat type T based
on the exposure type ET and the vulnerability type VT. The
definition of a threat type follows from the threat definition
matrix (as shown in Table III) which is formed by taking
exposure types in rows and vulnerability types in columns.
We define threat (N, T) to find the potential threat type of
a host N. This predicate invokes the predicates exposure
and vulnerability and identifies the threat type utilizing
the predicate threatModel.
threat (N,T): —

threatModel (T,ET,VT),

exposure (N,ET), vulnerability (N,VT).

risk (N,T): —
riskModel (T, TT,IT),
threat (N, TT),impact(N,IT).

Listing 4. Threat and risk measure

E. Risk

The risk of a host is defined as a function of its potential
threat (exploitation of its vulnerability) and the resulting im-
pact of that adverse event. In order to define the risk types, we
utilize the risk definition matrix by taking threat types in rows
and impact types in columns. We show an example of such a
matrix in Table IV. The predicate riskModel (T, TT, IT)
(as shown in Listing 4) states that if the threat type is TT
and the impact type is IT, the risk type is T. The predicate
risk (N, T) finds the risk type T of the host N.

The query al1Risk (HL, T) finds all the hosts L that have
the same risk type T. This query is useful for an administrator
to know the risk types of different hosts in a network. The
query riskScore finds the risk score of the network by
considering a (quantitative) risk value for each host based on
the host’s (qualitative) risk type. For example, the risk scores
of the high, medium, and low risk types can be taken as 1, 0.5,



h0:1.1.0.1,5,8 h2:1.1.1.1, 6,15
f 1.1.0.1, any, 2.2.0.1, 80 I
1.1,0.1,any,1.1.0.2, any

1.1.0.0/24, any,1.1.1.0/24, any

h4:1.1.2.1, 5,15
11.0.1, any, 2.2.0.1, 80
11.1.1,any, 2.2.0.1, 80
1.1.2.1, any, 1.1.1.1, 80

h1:1.1.0.2,6,2

2.2.0.1,10,0

h3:1.1.1.2,4, 10

Fig. 2. An example network topology
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and 0, respectively. The query finds all the hosts with different
risk types, sums the risk scores of these hosts, and normalizes
the aggregated value based on maximum risk value (when all
the hosts have high risk). This query specifies the risk that
resides in the network, which promotes the administrator to do
necessary reconfigurations in the policy or topology to keep
the risk within an accepted level.

F. Example

Here, we show an example of the application of our pro-
posed risk analysis model using a small test network as shown
in Fig. 2. The hosts’ information (i.e., the IP address, vulner-
ability score and asset value of each host) and the firewall
rules (allow rules only) are shown in the figure. We consider
the same aforementioned risk model. With this setting, the
query allRisk (L, high) returns the list [h2,h4] as L;
i.e., the hosts h2 and h4 have high risk. The invocations
of allRisk (L, medium) and allRisk (L, low) return
[h0,h3] and [h1], respectively.

G. Evaluation of Declarative Risk Model

We write a program to generate the predicates for a given
network topology and security policies. We randomly create
the core network of routers and firewalls, as shown in Fig. 2.
Each router is connected with one or more subnets. Each
subnet consists of a number of hosts. The routing entries of
each router are generated by following the shortest path from
the router to the destination. Firewall policies are generated
randomly. We run our queries using SWI Prolog [14] in a
machine equipped with an Intel Core i3 Processor and 4 GB
memory under Windows 7 OS platform.

We evaluate the impact of the network size on the execution
time of different queries in Fig. 3(a). We consider the network
size as the number of hosts. In the experiments, we vary
the number of hosts, while the core network remains the
same. Core network consists of 20 routers. We consider three
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©)

Impact of (a) network size, (b) the number of steps (transitive exploitation), and (c) the number of risk metric types over analysis time.

qualitative types for each risk definition metric and at most
three steps (i.e., K is 3) for transitive exploitation. We take
three queries for evaluation: vuln, exposure, and risk.
We observe from the graphs that the increase in the execution
times in the cases of the last two queries are linear with the
increase of the network size, while the time in the case of the
first query almost remains the same. The computing time of the
exposure is almost equal to that of the risk, i.e., the exposure
computation time covers most of the risk computation time.

The risk analysis time is evaluated with respect to the max-
imum steps (i.e., K) that considered for transitive exploitation.
Fig. 3(b) shows that if the number of steps increases, execution
time increases almost linearly. We also evaluate the analysis
time changing the number of risk metric types. The results
are shown in Fig. 3(c). We find that execution time increases
quadratically, if the number of metric types increases. This is
due to the reason that with the increase of metric types (i.e.,
the rows and columns of different metrics’ definition matrices),
the number of predicates increases quadratically.

III. RISK-BASED SECURITY POLICY SYNTHESIS

We apply our proposed risk analysis model for synthesizing
the network security policy. In this synthesis process, we
consider a number of constraints that keep the risk in the
network low.

A. Synthesis Goal

Our security policy synthesis has two parts: the firewall pol-
icy synthesis and the host placement synthesis. In the firewall
policy synthesis, firewall rules are generated for each firewall
based on the satisfaction of given constraints. All possible
traffics between the hosts of the network are considered in the
firewall policy. Our firewall policy synthesis goal is to assign
actions (i.e., ’allow’ or ’deny’) to the firewall rules. Placements
of hosts in the core network are synthesized depending on the
topology. We define the core network topology as a collection



TABLE V
AN EXAMPLE OF REACHABILITY REQUIREMENT MATRIX

Host

hO | hl h2

hO - yes | no

Host | hl | no - no

h2 | no | yes -
TABLE VI
AN EXAMPLE OF RISK MITIGATION MATRIX

Impact
high | medium | low
high no no yes
Threat medium no yes yes
low yes yes yes

of routers and firewalls, and links between them. It is assumed
that firewalls are placed in the topology in such a way that
helps to form a defense-in-depth. Synthesizing the placement
of a host means selecting a router (i.e., associated subnet)
to which the host can be connected, so that the constraints
are satisfied. Note that an administrator can easily apply the
synthesized placements of hosts with the help of virtual LANs.

B. User-driven Constraints

It is obvious that if there is no connectivity between the
hosts, the network would be risk-free. However, a computer
network is for connectivity, although connectivity between
each pair of hosts is not essential. Therefore, the reachabil-
ity requirement (Or connectivity requirement) is very crucial
as a constraint. We introduce a matrix named Reachability
Requirement Matrix (RRM), which represents all reachability
requirements (i.e., allowed traffics) in the organization. An
example of such a matrix is shown in Table V taking 3 hosts
(h0, hl, and h2) into consideration. In RRM, the hosts in
rows are the traffic sources, while the hosts in columns are
the traffic destinations. A traffic indicated by ’yes’ must be
able to successfully reach its destination from its source. A
’no’ indication for a traffic means that the reachability of the
traffic is not required.

The synthesis process is constrained by the limit that is
set on the risk. The limit stands for the maximum overall
risk score of the network (refer to Section II-E). We can have
specific constraints on the potential risk of a host. For example,
a particular host can not have high risk, or the host should have
low risk. Moreover, there can be security hardening policy
based on the source and destination of a traffic. Since a host
having high threat has higher chance to be compromised and
a host having high impact has more loss due to an attack,
we consider the threat of the communicating host (the source)
and the impact of the destination host for risk mitigation. We
define the Risk Mitigation Matrix (RMM) that represents a
relational matrix between threat and impact showing whether
a host having a particular threat is allowed to communicate
with a host having a particular impact. A host, for example,
with high threat should not be allowed to communicate with
a high impact host. Each connectivity requirement must be
satisfied without violating the risk mitigation constraints. An
example of RMM is shown in Table VI. We take the entries
with the ’yes’ value as the constraints.

TABLE VII
FORMALIZATIONS OF HOST PLACEMENTS AND FIREWALL POLICIES

Formalization of the host network addresses

; A host can have any of the set of IP addresses.
(assert (forall ((x Int))
(= (isHost x)
(or (= (nAddr x) (getIP 152 15 0 1))
(= (nAddr x) (getIP 152 15 0 2))

; No two hosts cannot have the same IP address.
(assert (forall ((x Int) (y Int))
(= (and (isHost x) (isHost y))
(and (not (= (nAddr x) (nAddr y)))))))

Formalization of firewall policies

; Default firewall rules

; Alow rules from a higher secure zone to a lower secure zone
(assert (= (frSrc fO 0) (getIP 150 15 0 0)))

(assert (= (frSMask f0 0) ((_ int2bv 32) 24)))

(assert (= (frDest fO 0) (getIP 150 15 1 0)))

(assert (= (frDMask f0 0) ((_ int2bv 32) 24)))

(assert (frAct f0 0))

; Synthesized firewall rules

; Rules from a lower secure zone to a higher secure zone)
(assert (= (frSrc f0 0) (getIP 150 15 1 1)))

(assert (= (frSMask f0 0) ((_ int2bv 32) 32)))

(assert (= (frDest O 0) (getIP 150 15 0 1)))

(assert (= (frDMask f0 0) ((_ int2bv 32) 32)))

; Firewall action (frAct) is for synthesis

C. Synthesis Model

We formalize the synthesis model using SMT [15]. The risk
analysis model follows the declarative logic model described
in Section II. We apply uninterpreted function over integer
terms to formalize the risk analysis model and corresponding
network reachability model. In this section, we describe the
formalizations of some parts of the model, which are crucial
for understanding the synthesis of the targeted configurations.
The formalizations follow the SMTLIB V-2 syntax [17].

1) Host’s Address Synthesis Model: We synthesize the
addresses of the hosts according to the given constraints. There
are two invariant constraints for assigning a network address
to a host: (i) a host can take an address only from a set of
addresses, and (ii) no two hosts can have the same address.
The set of addresses corresponds to the subnets of the network.
Each subnet is connected to a particular router. A router can
have more than one subnet connected to it. In Table VII,
the formalizations of these constraints are shown, which are
followed from a small example. Fig. 4 shows the network of
the example. In this example, we consider only seven hosts
along with the Internet. The core network consists of three
routers and two firewalls. The placements of the hosts in the
network are to be synthesized according to the constraints.

2) Firewall Policy Synthesis Model: Our firewall policy
synthesis problem is the assignments of actions to the firewall
rules. In the firewall policy, we consider one rule for each
possible traffic in the network. The action of the rule is kept
undefined. As all traffics are considered individually in the
policy, there is no rule which is superset or subset of another
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Fig. 4. A core network with three routers and two firewalls.
TABLE VIII TABLE IX

FORMALIZATION OF LINKS

SYNTHESIS MODELING: FORMALIZATION OF CONSTRAINTS

; The links (which are bidirectional) of the core network are fixed
(assert (and (link rO fO) (link fO r0)
(link O rl)

; Modeling of the relation/link between a host and a router

; A router (e.g., 10) is connected to each host of a subnet
(assert (= (rHostSubnet r0 0) (getIP 150 15 0 0)))
(assert (= (rHostSMask r0 0) ((_ int2bv 32) 24)))

; inSubnet finds whether the host x is under the s’th subnet (the router r)
(declare-fun inSubnet ((x Int) (r Int) (s Int)) Bool

; isLink finds if there is a link between two nodes
(assert (forall ((x Int) (y Int))
(= (isLink x y)
(or (and (isRouter x) (isRouter y) (link x y))
(and (isRouter x) (isHost y) (= x 10) (inSubnet x 10 0)

rule. However, the optimization of the synthesized firewall
rules can be done later for better efficiency. We consider an
invariant constraint for each firewall that any traffic other than
the rules in the policy should be denied. This is the default
deny constraint. The partial model of the firewall policy is
shown in Table VII.

3) Modeling of Links and Routing Rules: As the core net-
work is fixed, the links between the core network components
(i.e., routers and firewalls) are defined. The placements of
hosts in the network is undefined, i.e., unset, and as a result
the links between a host and a router can not be asserted
(i.e., fixed). Most importantly, the routers cannot have a fixed
routing policy based on these undefined placements. We model
this issue considering fixed subnets associated to each router.
Since the core network is fixed, the subnets connected to a
router are also fixed. We assume that if a host belongs to a
subnet of a router, there should be a link between the host and
the router. As the subnets are known, the routing policy is now
easy to define. The formalization of the links are presented in
Table VIII. The function link is used to denote a link. The links
of the core network are asserted explicitly. The links from the
hosts to the routers are modeled as a rule, which states that if
a host belongs to a subnet of a router, there is a link between
the host and the router. The function inSubnet checks whether
a host’s address is subsumed by a router’s subnet.

4) Modeling of Constraints: The modeling of the con-
straints is shown in Table IX. The reachability requirement
constraints are modeled using the function reachable. We

; Reachability requirement constraints
(assert (and (reachable internet h2)
(reachable internet h6)
(reachable h2 h0) (reachable hO hl)
(reachable h1 hO) (reachable hl h4)
(reachable h4 h3) (reachable h5 h6)
(reachable h5 internet)
(reachable hl internet)))

; Risk mitigation constraints
(assert (forall ((x Int) (y Int))
(= (reachable x y)
(or (= (threat x) 0)
(= (impact y) 0)
(and (= (threat x) 1) (= (impact y) 1))))))

; Constraint for risk
(assert (= totalRisk (+ (risk hO) (risk h1) (risk h2) - - - (risk h6))))
(assert (< totalRisk 6)) ; Max possible risk is 14 (all hosts with high risk)

TABLE X
FIREWALL POLICIES

Firewall | Source Address Destination Address Action
fl 150.15.1.2 150.15.0.3 Deny
f1 150.15.1.3 150.15.0.3 Deny
f1 150.15.2.1 150.15.0.3 Deny
T S P I, Allow
0 150.15.2.2 150.15.0.3 Deny
fo Internet 150.15.0.2 Deny
o Internet 150.15.0.3 Deny
{0 D N (P Allow

compute the overall risk (totalRisk) of the network as the sum-
mation of the risks of the hosts. Then, we set a constraint that
the total risk should be less than or equal to a (given) threshold
value. In the process of risk computation, we need to calculate
the exposure (refer to Section II). In our synthesis model, we
simplify the definition of exposure by considering the exposure
depth only. The constraint based on the risk mitigation policy
(refer to the risk mitigation matrix) is formalized as: if the
reachability is true for a pair of source and destination, the
risk mitigation policy should allow the traffic.

5) Example Output: If we verify the satisfiability of the
formalization of our example using a SMT solver (i.e., Z3),
we the solver can returns SAT (satisfiability) or UNSAT
(unsatisfiability). If the result is SAT, a model is also given
as output. This model represents the assignments of variables
that satisfy the given constraints. An UNSAT result specifies
that one or more constraints is not possible to satisfy. Hence,
there is no possible model in this case. The synthesized firewall
rules (partial) in the case of this example is shown in Table X.
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Fig. 6. Synthesis time with respect to (a) the number of hosts, (b) the number of routers (core network size) and (c) the constraint on the network risk (i.e.,

total risks of the hosts).

The placements of the hosts in the network according to the
output model is shown in Fig. 5. We find that the hosts h3,
h4, and h5 are connected to the router r2, the hosts A0 and
h2 are connected to the router r1, and A1, h5, and the Internet
are connected to the router r0.

D. Evaluation

The goal of our evaluation is to verify the scalability of our
model. We evaluate the execution time of our synthesis model
by varying the number of hosts, the number of routers (i.e., the
levels of defense-in-depth), and the constraint on the overall
network risk.

Impact of the number of hosts. The core network that we con-
sider in this analysis includes three routers and two firewalls
(as shown in Fig. 4). We do the analysis in two different
scenarios: in one scenario each subnet size (i.e., the maximum
possible number of hosts residing in a single subnet) is 40%
of the total number of hosts, while in the second scenario the
size is 60%. The evaluation results are shown in Fig. 6(a). We
observe that the synthesis time increases quadratically with
respect to the number of hosts. The number of possible flows
between the hosts depends on their number (considering a
fixed number of services) and it is O(N?), where N is the
number of hosts. The subnet size has a significant impact on
the time. When the number of potential addresses in a subnet
increases, the number of potential choices for the address of
a host increases. As a result, the synthesis time increases.
Fig. 6(a) justifies this argument.

Impact of the number of routers. The core network that we
consider in this analysis varies by increasing the number of
routers. We consider a firewall between each two routers (as
shown in Fig. 4). We do the analysis in two different scenarios.

In one scenario each subnet size (i.e., the address space for
the hosts) is the ratio of the total number of hosts and the
total number of routers, plus 1. In the second scenario, each
subnet size is the same ratio plus 5. The evaluation results
are shown in Fig. 6(b). We observe that the synthesis time
increases with respect to the number of routers. When the
number of routers increases, the number of firewall as well
as the total number of firewall rules increases. As a result,
the number of potential choices for the placement (subnet and
the address within the address) of a host increases. Hence, the
synthesis time increases.

Impact of the constraint on the network risk. In this analysis
we vary the constraint on the overall network risk (i.e., the
accumulation of the risk scores of all the hosts in the network).
The core network that we consider in this analysis includes
three routers and two firewalls. We do the analysis in two
different scenarios: in one scenario the number of hosts is
10, while in the second scenario the number is 20. In the
experiments, we vary the risk constraint from 7 to 15. Here,
we consider a quantitative value for each risk type, i.e., 1,
0.5, 0 for high, medium, and low risk, respectively (refer to
Section II-E). Hence, if a network has 20 hosts, among which
4 hosts have high risk, 8 hosts have medium risk, and the rests
have low risk, the total risk value is (4 X 1+8x0.54+8x0 = 8).
Hence, if the risk constraint is 10, it specifies that the total risk
of the hosts cannot be more than 10.

The evaluation results are shown in Fig. 6(c). We observe
that the synthesis time decreases with the increase of the
constraint value (i.e., when the constraint is relaxed). We
observe sharp decrease if we increase the constraint. However,
this decreasing rate of the synthesis time reduces rapidly if
the constraint is relaxed more. This is due to the reason that



the number of possible satisfiable solutions in tight constraint
(lower value for the maximum acceptable network risk) are
few. As a result, the required time is high. The more the
constraint is relaxed, the more solutions are possible. Hence,
the synthesis time (the searching time of a satisfiable solution)
reduces. If the constraint is relaxed more and more, it does not
increase possible solutions significantly due to the constraints
like the number of subnets, the reachability requirement, etc.

IV. RELATED WORK

Jaquith in [4] discusses the technical security metrics and
gives an emphasis on keeping a history for the measurements
in order to track the progress of any failure. The author
also explains the problem of “lack of proper visualization”.
Minimum-cost network hardening is one of the first efforts
done in the area of quantitative network security analy-
sis [5]. This work has limitations of taking all the given
network resources equally important and the attack resistance
as impossible or trivial. In the work [7], authors present a
methodology to model the composition of vulnerabilities as
attack graphs obtainable from topological vulnerability anal-
ysis (TVA) system. By analyzing attack graph, they explore
different concepts and issues on a metric to quantify potential
attacks. Singhal and Xou describe the security metrics to
compute the overall risk in an enterprise system in [8]. They
present an attack graph based system architecture and security
metrics for an enterprise network in order to quantify the
overall risk, which are essential for the decision makers in
taking sensible security management. In our research work, we
consider the reachability as the attack paths. Our risk analysis
expression is quite simple and generic. The authors present a
security analysis tool for analyzing misconfiguration problems
in existing policies [11]. But the tool cannot compute potential
risk of a host. It is also incapable to synthesize policies.

The research on security configuration synthesis is in a
premature stage. Dewri et al. present a systematic approach
to solve the optimization problem of security hardening
in limited budget using evolutionary algorithm [12]. Their
model is developed on an attack tree model. Homer and
Ou propose a logical framework using attack graphs to find
optimal deployment of security devices to block all attack
scenarios [13]. There are few works on risk based security
configuration analysis. In [10], the authors propose a frame-
work for automatic creation of network security architecture
including configuration rules and device placements in order
to minimize risk while satisfying the business requirements.
The framework intends to automate the creation of external
and internal Demilitarized Zones (DMZ) to improve security
by increasing isolation.They formalize this as an optimization
problem. However, the formalization takes a very simple
risk definition, which does not consider exposure properly.
Moreover, the solution to the problem is done by taking
heuristic approximations. In our work, we see the problem in a
different and novel dimension, i.e., as a constraint satisfaction
problem. Here, we give emphasis on a proper risk analysis and
an automated solution for the risk-based security hardening.

V. CONCLUSION

In this paper, we present a formal approach for the network
risk analysis. We use declarative logics to model the risk of
a host. The proposed risk analysis approach is a novel and
significant addition to the arena of risk assessment. We apply
different matrices in the process of the host’s risk computation.
These matrices make the risk definition flexible and extensible,
which is very useful in the dynamic concept of security.
In the evaluation of our declarative risk analysis technique,
we observed that the technique takes less than 10 seconds
for 1000 hosts. We also show the application of risk-based
constraints in the synthesis of firewall policies as well as host
placements for securing the network. We model the synthesis
task as a constraint satisfaction problem and apply SMT to
formalize these constraints. Though our synthesis model does
not consider constraints like budget, it is the first step to
implement an automatic synthesizer of network configurations
and firewall policies for the risk-based security hardening. The
evaluation results show that the model can solve a synthesis
problem with 50 hosts in around 10 seconds. In future, we will
extend our model to solve the problem of synthesizing security
policies for other security devices like IPSec and IDS. We will
also do more study in order to improve the efficiency of our
synthesis technique.
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