
A Formal Framework for Network Security
Design Synthesis

Mohammad Ashiqur Rahman and Ehab Al-Shaer
Department of Software and Information Systems, University of North Carolina at Charlotte, United States

Emails: {mrahman4, ealshaer}@uncc.edu

Abstract—Due to the extensive use of Internet services and
emerging security threats, most enterprise networks deploy
varieties of security devices for controlling resource access based
on the organizational security requirements. These requirements
are becoming more fine-grained, where access control depends
on heterogeneous isolation patterns like filtering network traffics,
trusted communication, and payload inspection. However, today
organizations are looking to design usable and optimal security
configurations that can harden the network security within
enterprise budget constraints. It requires analyzing various
alternative security architectures in order to find a security
design that satisfies the organizational security requirements
as well as the business constraints. In this paper, we present
ConfigSynth, an automated framework for synthesizing network
security configurations by exploring various security design al-
ternatives to provide an optimal security design. The main design
alternatives include different kinds of isolation patterns for traffic
flows in different segments of the network. ConfigSynth takes
security requirements in terms of isolation, business constraints
in terms of usability and deployment cost, along with the
network topology, as inputs. Then it synthesizes optimal and
cost-effective security configurations satisfying the constraints.
ConfigSynth also provides optimal placements of different se-
curity devices in the network according to the given network
topology. ConfigSynth uses Satisfiability Modulo Theories (SMT)
for modeling this synthesis problem. The scalability of the tool
is also demonstrated using simulated experiments.

Keywords-security; configuration synthesis; formal logic.

I. INTRODUCTION

Today, the organizational security requirements are very
complex due to extensive use of various network services
and newly evolving security threats. In addition, most of
the organizations are not only emphasizing the enforcement
of the security requirements but also requiring satisfaction
of different business constraints on usability and security
deployment cost. The problem of providing a strong security in
a network by exploring different security design alternatives,
as well as resolving the contention between the security and
business constraints is important but challenging.

Usually, the organizational security requirements indicate
isolation measures between the hosts. The isolation patterns
are defined based on different security devices and their
capabilities. An isolation pattern signifies the type of security
resistance, e.g., traffic filtering (firewall), trusted communica-
tion (IPSec), payload traffic inspection (IDS), hiding traffic
source identity (NAT), etc. However, any security design has
to satisfy the business constraints of the organization, which
are represented in terms of usability and deployment cost. The

connectivity requirements fall under usability, which define
the essential service flows between various network devices.
The implementation of isolation measures significantly affects
these constraints. For example, the use of both IPSec and IDS
based isolation patterns might reduce the usability by causing
some applications to be inaccessible for a host, while the use of
firewall based access denial would give no usability. Hence, it
is required to find security configurations by exploring differ-
ent security design alternatives that maintain the security and
usability within an expected level. Moreover, the deployment
of a security device has a cost. Hence, it is also required to
find the best security isolation design at an affordable cost.

In this paper, we present ConfigSynth, an automated frame-
work for synthesizing network security configurations and
physical placements of security devices, using constraint sat-
isfaction checking. ConfigSynth takes a network topology,
security requirements, and business constraints as inputs, and
formulates the security design synthesis problem. ConfigSynth
solves the problem by encoding the model into Satisfiability
Modulo Theories (SMT) [1]. ConfigSynth is a novel frame-
work that incorporates the security device placements in the
network topology within the design in order to model the de-
ployment cost, which is crucial for a security architecture. The
framework can be used as a decision support system to create
optimal security configurations for a network by exploring
different design alternatives. The evaluation of ConfigSynth
shows that it can synthesize optimal security configurations of
a network with several thousands of service flows.

The rest of this paper is organized as follows: The architec-
ture of ConfigSynth. is presented in Section II The modeling
of the security design synthesis problem is described in
Section III. The implementation of ConfigSynth is discussed in
Section IV. The evaluation results of our model are presented
in Section V. The related works are discussed in Section VI.
Finally, conclusions are drawn in Section VII.

II. CONFIGSYNTH ARCHITECTURE

ConfigSynth follows a top-down security design automation
approach instead of the traditional bottom-up approach. The
major contributions of ConfigSynth are as follows:

• Formally models the network topology, security (i.e.,
isolation) requirements and business (i.e., usability and
deployment cost) constraints.

• Formalizes the security design synthesis problem as
the determination of appropriate isolation patterns along

Fig. 1. The architecture of ConfigSynth.

with the correct placements of necessary security de-
vices in the network that satisfies the given require-
ments/constraints.

• Encodes the synthesis problem into SMT logics and
solves it using an SMT solver.

The ConfigSynth architecture is shown in Fig. 1. Con-
figSynth takes the following as its main inputs: (i) the net-
work topology, (ii) security (isolation) requirements, and (iii)
business (usability and deployment cost) constraints. The tool
provides its user with three sliders in order to select the
constraints on the isolation measure taken in the network, the
usability of the system, and the cost for deploying necessary
security devices. The sliders are scaled from 0 to some
bound. The tool also takes necessary specifications (usually
partial information), especially about the isolation patterns
and demand of different flows. The isolation requirements are
conditioned on the specifications of different primitive and
composite isolation patterns along with their relative order
based on their capabilities. ConfigSynth models the functional
mapping from each flow to an isolation decision variable.
Finally, it represents the overall isolation measure taken in the
network by accumulating isolation measures between different
host pairs under various services.

The usability is modeled based on the connectivity re-
quirements and the ranks of the services and service flows
as provided in the specifications. The connectivity require-
ments, which are modeled as a set of rules, where each rule
functionally maps a flow to a decision variable. We model
impacts of different isolation patterns on the usability. The
deployment of isolation measure is associated with a cost. The
cost depends on the security devices required for implementing
the isolation patterns. The number of security devices depends
on the network topology. ConfigSynth also models different
invariant and user-defined constraints on selecting the security
design. ConfigSynth formalizes the security design synthesis
problem as the conjunction of all of the isolation, usability, and
cost constraints. Therefore, the tool determines the isolation
patterns between each service flow in the network, such that
the overall isolation in the network and the usability of the
system satisfy the associated constraints, while the cost for
security deployment does not exceed the budget. ConfigSynth
solves this security design synthesis problem using Z3, a
powerful SMT solver [2].

III. SECURITY DESIGN SYNTHESIS MODEL

ConfigSynth models the network topology as a graph. The
network model is defined as ⟨N,L⟩, where,

• N defines a finite set of network nodes including hosts
and routers. Thus, N is a union of two sets: H and R.
H denotes a finite set of hosts. R denotes a finite set of
routers. Each host is identified by an ID (e.g., IP address).
A host may execute one or more services, which are
accessed by different hosts. A service is denoted using
g ∈ G, where G is the set of all services. The term g(i, j)
defines the flow between a pair of hosts {i, j}, where i
is the source and j is the destination, under a service g.

• L ⊆ N × N is a finite set of links, which defines the
interconnections between the network hosts.

ConfigSynth formalizes different requirements and con-
straints which are the building-blocks for formulating the
configuration synthesis problem. The requirements can be
classified into two categories: (i) security requirements, and
(ii) business constraints. There are also invariant and user-
defined constraints on security implementations.

A. Formalizing Security Requirements: Isolation

The more a host is isolated from other hosts in the net-
work, the potential threat to security becomes less. We define
isolation as the restriction on the connectivity, i.e., network
communication. The communication between two hosts can be
restricted applying different security devices or systems, such
as firewall, IPSec, IDS, NAT, etc. For example, a firewall can
be placed to simply block some traffic flows (i.e., complete
isolation), while IPSec can be placed to ensure authenticated
transmission for the allowed flows (i.e., restriction based on
authorization) in a network segment. Both of these devices are
required to ensure authenticated and controlled traffic flow.

In order to formalize isolation, it is required to define
different isolation patterns considering the security devices,
the levels of restrictions they enforce on the flows (i.e.,
their effectiveness on the isolation), and their impact on the
usability. The objective of isolation requirement is to have
fine-grained security measures in the network. Therefore, it
is required to devise an appropriate combination of security
devices for providing fine-grained security controls.
Isolation Patterns: Isolation patterns can be network level,
host level, or application level. In this research, we consider the
network level isolation, which includes the following patterns:

• Access deny. This is naturally enforced by a firewall.
• Trusted communication, i.e., authenticated and encrypted

communication. IPSec devices are used to build trusted
path (a.k.a. tunnel).

• Payload inspection. This is done by an intrusion detection
system (IDS).

• Source identity hiding. A network address translation
(NAT) device is applied in order to use different ad-
dress (typically a real IP address) instead of the original
address. With respect to security, it can give security

TABLE I
NETWORK LEVEL ISOLATION PATTERNS

Isolation
(k)

Isolation Pattern Decision Isolation
Score

1 Access Deny y1i,j(g) 4
2 Trusted Communication y2i,j(g) 2
3 Payload Inspection y3i,j(g) 1
4 Traffic Forwarding through Proxy y4i,j(g) 1
5 Traffic Forwarding through Proxy

with Trusted Communication
y5i,j(g) 3

ensuring one way communication (i.e., internal hosts to
external hosts). The same can be ensured by a firewall.

• Traffic forwarding through Proxy. For example, a reverse
proxy gives a layer of security in terms of traffic filtering
or implementing access control rules (ACLs) in the proxy
instead of the server.

ConfigSynth allows network administrators to define isola-
tion patterns considering different security devices (primitive
isolation) and their combinations (composite isolation), along
with their relative order based on the capabilities and func-
tionalities of the devices. A set of primitive isolation patterns
is shown in Table I. Each pattern is represented using an ID,
k. As shown in the table, k = 1 denotes ’access deny’ and
k = 2 for ’trusted communication’, and so on. We formalize
the isolation measures (i.e., the security configurations) as a
set of rules, {IR1, IR2, .., IRn}, where each isolation rule
IRr is defined as follows:

IRr : yki,j(g),where, i, j ∈ H and g ∈ G

The variable, yki,j(g) indicates that corresponding k’th iso-
lation pattern is required to be deployed between the host pair
{i, j} for service g. Note that a host can represent a group of
hosts that have the same properties (e.g., OS, services, etc.),
the same level of users, and reside in the same subnet.
Isolation Pattern and Security Device: An application of
an isolation pattern requires the deployment of one or more
security devices. Usually, an isolation pattern is related to a
particular type of security device. This one-to-one matching
is true for primitive isolation patterns. In case of a composite
isolation pattern, it is required to deploy more than one se-
curity device. The following equation models the relationship
between an isolation pattern and associated security device(s):

∀i,j,g, yki,j(g) ⇒ xd
i,j(g) (1)

Equation (1) specifies that if k’th isolation is selected for
g(i, j) flow, the d’th (type of) security device is required to
be deployed between the host pair {i, j} (i.e., on the route
of the flow). A particular value of d denotes a particular
type of security device. For example, as shown in Table II,
d = 1 represents a firewall security device. If k’th pattern is
a composite isolation pattern, multiple security devices are
required to implement the isolation pattern. Hence, in this
case, multiple xd

i,j(g)s are true. Usually, a security device
deployment depends on the isolation pattern only, not on the
flows (i.e., i, j, or g). Equation (1) considers this. Table II
shows a list of network security devices and the associated
primitive isolation patterns.

TABLE II
SECURITY DEVICES

Id (d) Device Name Primitive Isolation Pattern
1 Firewall Access Deny
2 IPSec Trusted Communication
3 IDS Payload Inspection
4 Proxy Traffic Forwarding through Proxy

Score of an Isolation Pattern: We define the isolation score
(also named as rank) of the kth isolation pattern between a pair
of hosts {i, j} under the network service g by the parameter
Lk
i,j(g). The score of an isolation pattern denotes its isolation

capability compared to others. The scores are computed based
on the relative order of the isolation patterns according to
their isolation capabilities. An administrator can provide the
relative order explicitly or a partial information about the
order. A simple formal model is developed based on the given
partial order between different isolation patterns. The model
generates a complete relative order by assigning a value to
each isolation pattern. The value assigned to a pattern denotes
its (relative) isolation score. The highest value specifies the
maximum isolation score. It is plausible to assume the same
score (Lk) for a particular isolation pattern irrespective of hosts
and services. Table I shows an example of relative isolation
scores from the following partial information:

∀k ̸=1, L
k < L1

(L2 > L3) ∧ (L2 > L4) ∧ (L5 > L2)

The isolation scores are normalized according to a specified
range, e.g., a scale of 0−1. Note that this scoring of isolation
patterns is relative and security requirements based on this
scoring system reflects the same relative meaning.
Isolation of a Host: The decision variables yki,j(g), for all k,
represent isolation patterns between a pair of hosts {i, j}
for the flow g(i, j). These decision variables and associated
isolation weights Lk

i,j(g) are used to formally define the total
isolation (Īi,j) of j with respect to the incoming traffic from i.
Īi,j is formalized as follows:

Īi,j =

∑
g

∑
k y

k
i,j(g)× Lk

i,j(g)∑
g

∑
k y

k
i,j(g)× 1

The equation indicates that the isolation between a pair
of hosts {i, j} is the sum of the isolation measures taken
for different services between these hosts. The equation also
indicates that the isolation is normalized by dividing the
sum by the maximum possible isolation (i.e., the maximum
isolation for a flow g(i, j) is 1 in the scale of 0−1). We
consider the similar normalization throughout the model. For
the ease of presenting the equations, we do not show the
normalization factors (i.e., the denominators at the right hand
side of the equations) for the rest of the paper.

The isolation of a host depends not only on the hosts that
can connect to it. The isolation also depends on the hosts
that it can connect to. For example, if a host can connect to
the Internet, the host can download malicious content from
the Internet and can get infected. However, the impact of such
communication is less compared to the communication coming
from the other direction. Since the outgoing traffic from j to

i is the incoming traffic for i from j, the total isolation Ii,j
considering both the incoming and the outgoing traffic with
respect to j for the pair of hosts {i, j} is defined as follows:

Ii,j = αĪi,j + (1− α)Īj,i (2)

Here, α (0 ≤ α ≤ 1) is the weight for the isolation due to
the incoming traffic, while 1−α is the weight for the isolation
due to the outgoing traffic. The total isolation score of a host
j is defined in (3).

Ij =
∑
i ̸=j

Ii,j (3)

Equation (4) represents the overall isolation in the network
(i.e., the network isolation) considering all of the hosts.

I =
∑
i

Ii (4)

B. Formalizing Business Constraints: Usability

Business constraints play a significant role in synthesizing
usable and cost-effective security configurations in a network.
For example, a higher isolation can provide strong defense in
the network, but the usability of the network might reduce to
a level which is unacceptable to the organization. Resolving
the contention between security requirements and business
constraints is a challenge. In ConfigSynth, we formalize the
synthesis problem under two business constraints: (i) usability
and (ii) deployment cost. In this subsection, we discuss the
formalization of the usability.
Connectivity Requirements: Every organization usually has a
number of service flows, which are essential for its successful
operation. Each of these connectivity requirements represents a
flow that must be able to communicate. Connectivity require-
ments are formalized as a set of rules {CR1, CR2, .., CRn},
where each connectivity rule, CRr defines the mapping from
a flow (i.e., a tuple of source, destination, and service) to a
decision variable c that represents whether the flow is required
to be allowed. The formal definition of CRr is as follows:

CRr : cai,j(g),where, i, j ∈ H and g ∈ G

Here, a can have two values (binary): 1 and 0. The value 1
represents that the service g must flow from i to j. The value 0
means nothing has been specified for this flow, i.e., the flow
can be allowed or denied. CR represents the conjunction of
all connectivity requirement rules.

CR ⇒
∧
r

CRr (5)

Usability Computation: The usability of the network depends
on the ranks of the service flows between the hosts in the
network. The rank of a service flow denotes the demand
of the flow. Each service flow g(i, j) is associated with a
rank, ai,j(g). These ranks are expected to be given in the
form of a relative order by the administrator based on the
organizational demand. Partial information can be given, from
which a complete relative order can be derived, as it has been
shown in the case of the isolation patterns. If no specification

is given about the demand of different flows, all flows receive
the same rank. The ranks are normalized between 0 to 1. The
usability of a service g in a host j is formalized as follows:

Sj(g) =
∑
i

∑
k

bki,j(g)× ai,j(g)

The application of an isolation pattern to a flow can affect
the usability of the flow. The parameter bki,j(g) represents
the usability of the flow g(i, j) due to applying the k iso-
lation pattern between {i, j}. We assume that the usability
depends on the isolation pattern, not on the host-pair (i.e.,
bki,j(g) = bk(g)). The value of bk(g) can be determined based
on the prior knowledge of network security by considering
the time or effort required to get a service access under an
isolation measure. The valuation of the parameter bk(g), in the
simplest form, can be as follows: the ’access deny’ isolation
pattern reduces the usability to zero, i.e., ∀g, b1(g) = 0;
while other isolation patterns maintain the same usability, i.e.,
∀g,k ̸=1, b

k(g) = 1. The usability Sj with respect to a host
j represents the accumulated usability considering all of the
services running in the host.

Sj =
∑
g

Sj(g)

The overall usability of the network (i.e., the network
usability) is represented by (6).

U =
∑
j

Sj (6)

C. Formalizing Business Constraints: Deployment Cost

The deployment of a security device incurs costs and an
organization often has an afford limit for deploying security
measures. The deployment cost is the sum of the prices of the
security devices that are required to be deployed in different
segments of the network in order to implement necessary
isolation patterns between different host-pairs. The number of
security devices depends not only on the isolation measures
but also on the topology. The cost cannot be figured out from
the isolation measures alone. This is because of the fact that
there are usually similar types of isolation between multiple
host-pairs and these host-pairs can share one or more links
for communication. In this case, placing a single security
device at one of the shared links may ensure the desired
isolation. Moreover, if there is more than one routing path
between a host-pair, we have to secure all of the alternative
paths. Therefore, modeling correct and optimal placements
of the security devices considering the network topology, the
isolation patterns, and the budget is very challenging.
Modeling Flow Routes: ConfigSynth requires the flow routes
between the hosts for determining the placements of the
security devices satisfying the isolation measures. A flow
route, F z

i,j is defined as a set of links {li,j,z,1, li,j,z,2, ...} ⊆ L,
that form a path from a source i to a destination j. As multiple
routes are possible between a pair of hosts, z indicates the
index of the flow route (i.e., the z’th route), between the host-
pair {i, j}. The term |F z

i,j | denotes the path length, i.e., the

number of hops or links in the path. Fi,j denotes all of the
flow routes possible from i to j.

Fi,j ⇒
∧
z

F z
i,j

ConfigSynth finds the flow routes for a host pair by applying
a path searching algorithm on the network topology.
Formalizing Device Placements: Equation (1) specifies the
security devices which are required to employ an isolation
pattern. The placements of the security devices on the flow
routes are modeled from these specifications. If an isolation
pattern, e.g., ’access deny’, is selected for the traffic from a
host i to a host j, then it is required to block the traffic through
all possible flow routes between {i, j}. Equation (1) specifies
a firewall to be deployed for implementing an ’access deny’
isolation pattern. Hence, there should be a firewall deployed at
least on a link of each flow route. We formalize the placement
of a security device d for a particular pair of hosts as follows:

xd
i,j(g) ⇒ ∀z∃tldi,j,z,t (7)

In the equation, ldi,j,z,t represents that a security device of
type d is deployed on the link li,j,z,t. Note that if there is a
security device, e.g., firewall, on the flow route for a host pair,
this does not imply that the flow access between the pair is
denied. It is denied only if the ’access deny’ isolation pattern
is specified for the host pair.

The placement of an IPSec device requires a special mod-
eling which is different from that of the security devices
like firewall and IDS. The ’trusted communication’ isolation
pattern usually requires encrypted communication (i.e., tunnel)
to take place throughout the unsecured or untrusted part of
the network, which is likely to be host to host. Moreover, to
ensure an encrypted tunnel between a host pair, it is required
to place two IPSec devices, one at the source side (start of the
tunnel) and another at the destination side (end of the tunnel).
A network administrator needs to specify the guidelines for
placing the IPSec gateways. For example, the administrator
can specify the maximum number of hops (i.e., the number
of links) from the end-hosts that can be outside of the tunnel.
For example, it can be specified that the source-gateway and
the destination-gateway should be deployed within two hops
from the source and the destination respectively. We model
this as follows:

x2
i,j(g) ⇒∀z, (|F z

i,j | ≥ (2× T))∧
(∃t(l2i,j,z,t ∧ (t ≤ T))∧
∃t′ , (l2i,j,z,t′ ∧ ((|F z

i,j | − t′) ≤ T)))

Here, |F z
i,j | represents the length of the flow route F z

i,j and
T denotes the maximum number of hops that can be outside
of the tunnel. According to this approach, if the flow route
between the source and the destination has only few hops (e.g.,
less than 2T + 1 hops), then ’trusted communication’ is not
possible to be deployed between this pair of hosts.

For the deployment of the security devices, the deployment
cost is computed as the summation of the costs of all of

the devices deployed in different links. We define Cd as the
average deployment cost of the security device d. Now, if ld

denotes whether a security device d is deployed on the link
l ∈ L, the total deployment cost C is computed as follows:

C =
∑
l

∑
d

ld × Cd,where ld ⇒ ∃i,j,z,t, ldi,j,z,t (8)

D. Modeling Constraints

ConfigSynth synthesizes security configurations by solving
a number of constraints. In the following, we discuss these
constraints in different categories.

Threshold Constraints: In ConfigSynth, we have three
generic threshold based constraints in selecting the security
measures (i.e., isolation patterns) on the network flows.

TC : (I ≥ ThI) ∧ (U ≥ ThU) ∧ (C ≤ ThC) (9)

In the equation, ThI , ThU and ThC represent the slider
values, i.e., the constraints on the network isolation, usability,
and deployment cost, respectively. The network isolation and
the network usability must be greater than or equal to their
respective threshold values, ThI and ThU . The deployment
cost must also be within the budget, ThC .
Invariant Constraints on Isolation Selections: In Con-
figSynth, we consider different invariant constraints. These
constraints are mainly required for maintaining the consistency
between the isolation and connectivity requirements based on
their functional behaviors.

IIC1 : yki,j(g) ⇒ ∀ k̄ ̸=k¬yk̄i,j(g)

IIC2 : c1i,j(g) ⇒ ¬y1i,j(g)

IIC ⇒
∧
c

IICc (10)

The constraint IIC1 states that only one isolation pattern
can be selected for a flow. The constraint IIC2 ensures that
if ’access deny’ is chosen as the isolation pattern for the flow
from j to i, there should be no connectivity requirement for
that flow. Equation (10) combines all invariant constraints.
User-defined Isolation Policy Constraints: User-defined con-
straints represent organizational requirements. The following
are examples of some user-defined constraints:

UIC1 : (g = SSH) ⇒ ¬y2i,j(g)

UIC2 : ¬y1
i,ĵ
(g) ⇒ ¬y1ī,i(g) ∧ ¬(̄i = Internet)

UIC3 : (g = WEB) ⇒ ¬y2i,j(g)

UIC ⇒
∧
c

UICc (11)

An organizational policy (UIC1) may state that IPSec
should not be deployed for a pair of hosts in case of SSH
(Secure Shell) based communication. The isolation require-
ment for a particular type of flow can be defined as stating that
access will be allowed from a source i to a specific destination
ĵ under the service g, if the Internet is not allowed to connect

TABLE III
ASSISTANCE ON CHOOSING SLIDERS’ VALUES BY CONFIGSYNTH

Isolation score = 10 : Usability score = 0
No flow is allowed to communicate. Each host is isolated from other hosts.

Isolation score = 0 : Usability score = 10
No isolation measure is taken on any flow.

Isolation score = 8.2 : Usability score = 1.8
Each flow is protected by ’access deny’ except connectivity requirements.
· · · · · · · · ·
Isolation score = 5 : Usability score ≤ 5
1/2 of the flows (50%) are protected by ’access deny’.

Isolation score 5 : Usability score ≤ 7.5
1/4 of the flows (25%) are protected by ’access deny’,
1/4 of the flows (25%) are protected by ’trusted communication’,
· · · · · · · · ·

to i. This is modeled in UIC2. The organizational policy may
require that no web service should be protected by the ’trusted
communication’ isolation pattern (UIC3), while the flow is
already specified to be allowed as a connectivity requirement.
Equation (11) represents all user-defined constraints.

IV. PROTOTYPE IMPLEMENTATION OF CONFIGSYNTH

The main objective of our configuration synthesis problem
is to maximize the security in the network by satisfying
various security requirements as well as the organization’s
business constraints. Thus, the synthesis problem is formalized
as the satisfaction of the constraint, (Constr), which is the
conjunction of all of the constraints as follows:

Constr ⇒ CR ∧ TC ∧ IIC ∧ UIC (12)

The equation specifies that the solution to the synthesis
problem produces security configurations, i.e., isolation pat-
terns between different host pairs (yki,j(g)s) along with the
placements of the security devices (lds), which ensures the
fulfillment of all the constraints as described in Section III-D.

A. SMT Encoding and Query Formulation

We implement our model by encoding the system con-
figuration and the constraints into SMT logics [1]. In this
encoding purpose we use the Z3 .Net API [2]. For encoding the
formalizations of the network topology, device configurations,
traffic modeling, and the security and business properties,
we use mainly two types of terms: boolean and integer. We
use boolean terms for encoding the boolean configuration
parameters and decision variables like isolation patterns and
device placements. The remaining parameters are modeled as
integer terms. The parameter values that may take real values
(e.g., the isolation and usability scores) are normalized into
integer values. In our modeling, we represent a host using an
integer ID, which is not necessarily in IP-address format, since
no IP-address based computation is required in this model.
Each service is also encoded as an integer value (as an ID
specifying a protocol-port pair). ConfigSynth takes the system
configurations, requirements and constraints from a text file
(input file). ConfigSynth also provides a graphical interface
to its user to select or edit the inputs.
Choices for Sliders’ Values: An administrator applies con-
straints on the network isolation, usability, and deployment
cost by selecting the associated sliders. Each slider has a scale,

Algorithm 1 Systematic Analysis of Unsat Result
if Solver returns UNSAT then

Get the unsat-core U .
A = the set of all combinations (sets) by taking 1, 2, ..., |U |
assumptions from U .
for Each combination of assumptions, A ∈ A do

Remove the assumptions in A from the query Constr.
if Solver returns SAT then

Get Model, M .
Print each ThAi according to the value of Ai ∈ A in M .

end if
end for

end if

e.g., from 0 to 10. A particular choice for a slider, especially
in the cases of isolation and usability, may not give an exact
understanding of the expected behavior. For example, in the
case of the isolation slider, the maximum slider value(i.e., 10)
represents that each host is isolated from the rest (i.e., the
’access deny’ isolation pattern is applied on each flow). On the
other hand, the slider value of zero represents that no isolation
measure is taken in the network. However, the level of security
meant by a particular selection of the slider other than the
maximum and minimum is hard to envisage. Since a particular
network isolation can be achieved using different security
configurations, ConfigSynth provides an assistance to its user
in order to give an idea to understand the scale of the slider
and the expected security configurations. Based on the given
requirements and network topology, ConfigSynth presents to
its user a number of slider values with their potential outcomes.
Table III shows an example of such an assistance considering
the example referred to Section IV-C.

B. Synthesis Result Analysis

ConfigSynth uses Z3 SMT solver to check the verification
constraint (Constr), which provides a satisfiable (SAT) result
if all constraints are satisfied. The SAT result provides a
SAT instance, which represents the value assignments to the
parameters of the model. According to our objective, we
require the assignments to the following variables: (i) the
security configurations, i.e., the isolation variable (yki,j(g)),
between each pair of hosts in the network, and (ii) the security
device placements in the topology, i.e., the device placement
variable (ld) for each link. The security configurations and the
device placements are printed in a text file (output file) for the
user. ConfigSynth also provides a graphical representation of
the output (i.e., the network with the placements of the security
devices) to its user. Fig. 2 shows snapshots of such graphical
representations (the network before and after the synthesis).
UNSAT result and its analysis: If there is any disagreement
or inconsistency between the constraints, the SMT solver
gives an unsatisfiable (UNSAT) result. In this case, it is
required to get the unsat-core in order to know the unsatisfied
constraints. We get the unsat-core by using the concept of hard
and soft clauses, i.e., the assumptions in Z3. We take some
constraints as the assumptions and verify them. In the case of
a UNSAT result, the unsat-core gives the list of assumptions

(a)

(b)

Fig. 2. (a) An example network for synthesizing security configurations and
corresponding security device placements. An ID is assigned to each of the
hosts, routers, and links. (b) The solution to the example problem, i.e., the
placements of necessary security devices.

TABLE IV
INPUT (PARTIAL) TO THE EXAMPLE

Number of Security Devices
3 # 1 for Firewall, 2 for IPSec, and 3 for IDS, while 0 for None
Isolation Specifications (partial orders)
2 # Device, Device, Comparison (1 for =, 2 for >, and 3 for >=)
1 2 2
2 3 2
Cost of each isolation device
20 12 15
Number of Hosts and Routers
10 8
Links
18
1 11
2 11
· · · · · · · · ·
Connectivity Requirements (each row for a host, which ends with 0)
3 0 # The flow from Host 1 to Host 3 must be allowed
4 0
1 2 0
2 0
3 4 0
3 4 0
1 2 0
1 0
0
1 0
Sliders’ Values (Isolation 0-10, Usability 0-10, Cost in thousand dollars)
7.5 3 80

(i.e., the constraints) which do not satisfy. The constraints
that we take as the hard clauses are connectivity requirements
(CR), invariant constraints (IIC), and user-defined constraints
(UIC). We take the following constraints as the assumptions:

• The network isolation constraint, i.e., I ≥ ThI .
• The network usability constraint, i.e., U ≥ ThU .
• The deployment cost constraint, i.e., C ≤ ThC .
By performing a systematic analysis of the unsat-core, Con-

figSynth shows the constraints that is required to be tuned or
modified in order to satisfy the model. We follow Algorithm 1,

TABLE V
SELECTED ISOLATION PATTERNS FOR THE FLOWS IN THE EXAMPLE

Destination Sources Classified according to Selected Isolation Patterns
Host Access Deny Trusted

Communication
Payload
Inspection

No Isola-
tion

1 5, 6, 9 3, 4, 7, 8 − 2, 10
2 5, 6, 8, 9, 10 3, 4, 7 − 1
3 7, 8, 9, 10 2 − 1, 4, 5, 6
4 7, 8, 9, 10 1, 2 − 3, 5, 6
5 1, 2, 3, 4, 9, 10 7, 8 − 6
6 1, 2, 3, 4, 9, 10 7, 8 − 5
7 1, 2, 3, 4, 9, 10 5 − 6, 8
8 1, 2, 3, 4, 9, 10 5, 6 − 7
9 1, 2, 3, 4, 5, 6, 7, 8 − − 10
10 1, 2, 3, 4, 5, 6, 7, 8 − − 9

a simple algorithm to show all possible close solutions. In this
way, ConfigSynth helps in identifying inconsistencies in the
constraints and provides satisfiable choices for the constraints,
which is an added support to network administrators for
synthesizing the best security specifications.

C. Example

Fig. 2(a) shows a small network for which an optimal
security design will be synthesized based on the given input
file as shown in Table IV. In this example, the connectivity
requirements are considered as the list of allowed services
between different hosts. In order to keep the example simple,
we consider only three primitive isolation patterns (i.e., ’access
deny’, ’trusted communication’, and ’payload inspection’).
We also assume a single flow type (i.e., a single service)
between each pair of hosts. ConfigSynth gives a SAT result
for this example. From the resultant SAT instance, we find the
necessary isolation patterns along with the necessary device
placements. Fig. 2(b) shows the placements of the security
devices. Table V shows the isolation patterns.

V. EVALUATION

In our evaluation, we first present the analysis on the
relationships between the network isolation, usability, and
deployment cost. Then, we present the performance (i.e.,
scalability) analysis of the tool. We ran our experiments on
different synthetic test networks.

A. Analysis of the Relationships among Isolation, Usability,
and Deployment Cost Constraints

In this analysis, we ran a number of experiments considering
the same network topology as it is shown in Fig. 2(a). The
impact of the network usability constraint on the network
isolation is shown in Fig. 3(a) under two different deployment
cost constraints. We found that with the increase of the
usability constraint, the maximum possible isolation reduces.
However, due to the connectivity requirements, the isolation
cannot be more than a particular point, though the usability
constraint is very low. At the lower values of the usability
constraint, the rate of the isolation decrease is less compared
to the rate at the higher values of the usability constraint.

The deployment cost constraint has an impact on the
isolation. Fig. 3(a) shows that in the case of the higher
cost constraint (i.e., $200K), a higher isolation is achieved
compared to the case of the lower cost constraint (i.e., $100K).
A higher cost allows ConfigSynth to deploy more security

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

Is
ol

at
io

n

Usability

The relation between Isolation and Usability

Cost = $100K
Cost = $200K

(a)

 0

 2

 4

 6

 8

 10

 20 40 60 80 100 120 140 160

Is
ol

at
io

n

Deployment Cost

The relation between Isolation and Deployment Cost

Usability = 5
Usability = 7

(b)

Fig. 3. (a) The maximum possible isolation with respect to the usability constraint considering a fixed cost constraint (i.e., $200K) and (b) the maximum
possible isolation with respect to the deployment cost constraint considering a fixed usability constraint (i.e., 5).

devices, particularly IPSec devices in these experiments, which
helps in increasing the isolation. We also found that with the
increase of the usability constraint (i.e., from 0 to 7), the
difference between the maximum possible isolation values in
both of the cases reduces. At the usability value 7, we found
that the isolation difference sharply increases, then slowly
reduces. The reasons behind this behavior are that different
security devices have different prices and different impacts on
the usability (Section III). Even different deployment aspects
influence the deployment cost. For example, IPSec based
security usually requires deployment of two IPSec gateways
close to the end hosts at the boundary of the core network,
which does not let many hosts to share these devices for
implementing the ’trusted communication’ isolation pattern.
As a result, IPSec based security incurs a higher deployment
cost compared to the firewall or IDS based security.

Fig. 3(b) shows the relationship between the isolation and
the deployment cost more adequately considering two different
usability constraints. We changed the cost constraint and ob-
served the maximum possible isolation. Obviously, in the case
of the lower usability constraint (i.e., 5), the isolation is higher
compared to the case of the higher usability constraint (i.e., 7).
We also found that after a certain level, it is not possible
to increase the isolation despite increasing the deployment
budget. This is due to the usability constraint. To increase
the isolation after a certain point, it is required to use the
highly scored isolation patterns (e.g., ’access deny’), which at
the same time reduce the usability lower than the given limit.

B. Performance Analysis

The scalability of our proposed model is evaluated by
analyzing the time and space required in synthesizing the
configurations (i.e., satisfying the constraints) by varying the
problem size and the constraints. The synthesis time includes
the model generation time and the constraint verification time.
However, the model generation time is negligible compared to
that of the verification time. The problem size depends mainly
on the number of flows, since the synthesis problem considers
the isolation pattern for each flow. The number of flows mostly
depends on the number of hosts.
Methodology: We ran ConfigSynth in a machine running
Windows 7 OS. The machine is equipped with an Intel Core i3
Processor and a 4 GB memory. We generated the test networks
randomly taking hosts within the range of 50−1000 and the
routers within the range of 8−20. In the test networks we

randomly choose 1−3 services (i.e., maximally 3 flows) be-
tween a pair of hosts. We consider no user-defined risk-based
constraints for the choice of isolation patterns (RMC). The
isolation and usability constraints are chosen from normalized
scales (sliders) of 0−10 (0 for no isolation/usability, while 10
for complete isolation/usability).
Impact of the Problem Size: Fig. 4(a) and Fig. 4(b) show
the model synthesis time with respect to the problem size. In
the first analysis, we considered two different scenarios. In
one scenario, the volume of the connectivity requirements is
10% of all the flows possible between the hosts. In the other
scenario, the percentage is 20%. In this analysis, we varied
the problem size with respect to the number of hosts and the
corresponding results are shown in Fig. 4(a). We observed
that the analysis time increases rapidly with the number of
hosts. This is due to the reason that the problem size depends
on the number of possible flows in the network. The number
of flows is O(N2), where N is the number of hosts and the
number of services is constant. The volume of the connectivity
requirements also increases with the increase in the number
of flows. As a result, the model size increases, which requires
the verification of more constraints. All of these increase the
running time over O(N2). In the second analysis, we varied
the core network by changing the number of routers in two
different connectivity requirements. The results are presented
in Fig. 4(b). In this case, since the number of hosts in the
network remains the same, there is no increase in the number
of flows. However, due to the increase in the number of
routers, the core network becomes larger, where the hosts
are more distributed and more links are turned out as the
candidates for security device placements. As a result, more
search is required to find a satisfiable model, which increases
the synthesis time. We observed quadratic increase in the
synthesis time. We also analyzed the impact of the volume of
the connectivity requirements (i.e., the percentage of all flows
that are in the connectivity requirements) on the synthesis time.
The results are presented in Fig. 4(c). Though the number of
total flows in the network remains unchanged in this case,
the increase in the number of connectivity requirements adds
more constraints which decreases the possible options for a
satisfiable model. Hence, the synthesis time increases.
Impact of the Tight and Relaxed Constraints: We analyzed
the impact of the tight or relaxed constraints on the model
synthesis time. Tightening (relaxing) the network isolation or
usability constraint means to increase (decrease) the associated

 0

 100

 200

 300

 400

 500

 600

 700

 800

 50 100 150 200 250 300 350 400 450 500

T
im

e
(S

ec
on

d)

Number of Hosts

Analysis Time w.r.t. Number of Hosts

Maximum 10% Connectivity Requirement
Maximum 20% Max Connectivity Requirement

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 8 10 12 14 16 18 20

T
im

e
(S

ec
on

d)

Number of Routers

Analysis Time w.r.t. Number of Routers

Maximum 10% Connectivity Requirement
Maximum 20% Connectivity Requirement

(b)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 5 10 15 20 25 30 35 40 45 50

T
im

e
(S

ec
on

d)

Percentage of Flows in Connection Requirement

Analysis Time w.r.t. Volume of Connection Requirement

Network with 200 Hosts
Network with 300 Hosts

(c)
Fig. 4. The model synthesis time w.r.t. (a) the number of hosts, (b) the number of routers, and (c) the volume of the connectivity requirements.

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 1 1.5 2 2.5 3 3.5 4 4.5 5

T
im

e
(S

ec
on

d)

Isolation Constraint

Analysis Time w.r.t. Isolation Constraint

Usability Constraint = 3
Usability Constraint = 5

(a)

 100

 200

 300

 400

 500

 600

 700

 800

 1000 1200 1400 1600 1800 2000

T
im

e
(S

ec
on

d)

Deployment Cost Constraint

Analysis Time w.r.t. Deployment Cost Constraint

Usability Constraint = 3
Usability Constraint = 5

(b)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 100 150 200 250 300 350 400

T
im

e
(S

ec
on

d)

Number of Hosts

Analysis Time in Unsat Cases

Unsatisfiable Case
Satisfiable Case

(c)
Fig. 5. (a) The impact of the isolation constraint on the model synthesis time, (b) the impact of the deployment cost constraint on the model synthesis time,
and (c) the comparison between the satisfiable and unsatisfiable cases w.r.t. the model synthesis time.

constraint value. On the other hand, tightening (relaxing) the
deployment cost constraint means to decrease (increase) the
constraint value. The analysis results are shown in Fig. 5(a)
and Fig. 5(b) varying the isolation constraint and the de-
ployment cost constraint, respectively. In these analyses, we
considered a fixed number of hosts (300) and a fixed volume of
connectivity requirements (10% of all flows) in two different
network usability constraints (3 and 5 in a scale of 10).
We observed that the execution time increases significantly
with the increase of the network isolation constraint (see
Fig. 5(a)). This is due to the reason that increasing the isolation
constraint reduces the number of possible solutions to the
model with respect to a particular usability constraint and a
specific deployment budget. As a result, usually more search
(i.e., a longer time) is required to find a solution. After a certain
value of the isolation constraint (i.e., 3-4), a small increase
in the constraint increases the synthesis time sharply. We
observed almost similar behavior in the case of the deployment
cost constraint (see Fig. 5(b)). In this case, the higher is the
budget, the more satisfiable options are available. Hence, the
synthesis time decreases with the increase of the budget. We
observed that after a certain increase in the budget ($1500K),
the synthesis time does not decrease further. Because, the
number of potential satisfiable models does not increase any
more despite increasing the budget.

Performance in the Unsatisfied Cases: In the cases of very
tight constraints (e.g., very high values for isolation and usabil-
ity constraint or low values for the cost constraint), there may
not be any satisfiable model. In these cases, the SMT solver
takes slightly longer time to give the unsatisfiable (UNSAT)
results compared to the time required in the satisfiable cases.

TABLE VI
THE MEMORY REQUIREMENT (MB) W.R.T. PROBLEM SIZE

Hosts Scenario 1 Scenario 2
200 6.71 6.59
400 30.48 41.72
600 113.99 160.70
800 376.21 532.89
1000 818.92 1158.54

Because, in an unsatisfiable case, the SMT solver requires
verifying all possible ways to conclude that there is no solution
satisfying all of the given constraints. Fig. 5(c) shows the
comparison between the satisfiable and unsatisfiable cases with
respect to the synthesis time.
Space Requirement: The space (memory) requirement of our
model based on the SMT solver [2] is evaluated by changing
the number of hosts. The evaluation is done considering the
memory required for modeling the synthesis problem. The
memory requirement is the sum of the memory for modeling
the system parameters and that for modeling the constraints.
The analysis results are shown in Table VI in two different
scenarios of the network isolation constraint. In the first
scenario, the isolation constraint is 3 (in a scale of 10), while
in the second scenario, this is 5. We observed that the memory
requirement increases quadratically (O(N2)) with the increase
in the number of hosts. The table shows that the memory
requirement in the second scenario is larger than the memory
requirement in the first scenario. If the isolation constraint
is high, the solver requires searching more options for a
satisfiable solution, which incurs more space.
Discussion on Performance Analysis: Our evaluation results
show that the time and memory requirements of ConfigSynth
increases quadratically with the problem size. However, Con-
figSynth can solve a synthesis problem with 500 hosts (i.e.,

several thousands of flows) within 800 seconds consuming
100MB memory only. Apparently, it may seem that this num-
ber of hosts is small comparing to large enterprise networks.
However, in most of the large networks, usually many of the
hosts exhibit similar properties. They are running the same OS,
services, and even operated by the same level of users (e.g., a
student lab in a university or a customer service center in an
organization). They usually reside under the same subnet. The
security configuration for such a group is expected to be the
same. Hence, this group can easily be assumed as a single
host. Moreover, in an enterprise network the overall number
of services running on the hosts are also limited. Therefore,
our model is adequately efficient for an enterprise network.

VI. RELATED WORK

In this section, we study researches that focus on either
security policy management or security configuration harden-
ing. Throughout the last decade, the security policy miscon-
figuration have been studied extensively in [3], [4], [5], [6],
[7], [8]. In these works, the formal definition of configuration
anomalies and safe deployment of single or multiple security
devices, mainly firewalls, have been presented and algorithms
were proposed to discover configuration inconsistency. These
works follow the traditional bottom-up approach of analyzing
existing security policies, which cannot be used to automati-
cally synthesize policies based on business requirements.

Several researches have been done on attack graph based
security configuration analysis. In [9], the author proposes a
technique to place intrusion detection system (IDS) sensors
and prioritize IDS alarms using attack graph analysis. The IDS
sensors are placed to cover all these paths. In [10], the authors
model the problem of selecting a set of security hardening
measures to minimize the residual damages in a predefined
attack graph within a certain budget. Few works have proposed
to find optimal deployment of security devices using attack
graphs in order to block all attack scenarios [11], [12]. How-
ever, these works cannot find optimal security configurations
as well as the automated security device placements within
the deployment budget and usability constraint.

The research on the security design synthesis is in a pre-
mature stage. ConfigAssure is a requirement solver presented
in [13]. The tool takes security requirements and configuration
variables as inputs and produces the values of the configuration
variables as outputs that make the requirements true. Confi-
gAssure requires complete and well defined properties and
it can not reason about the optimal configuration based on
isolation, usability and deployment cost. In the works [14],
[15], the authors presented procedural approaches of gen-
erating firewall configurations. In [15] they also considered
the device deployment cost. However, these works only de-
scribe generation of firewall policy configurations and do not
consider different isolation measures (i.e.. firewalls, IPSec,
IDS, etc.) in the context of security requirements, usability
satisfaction, and deployment cost constraints. In addition, these
works cannot do the optimal placements of security devices in
the network. Even, the model presented in [15] does not relate

security device placements (according to the topology) with
the computation of residual risks. Hence, none of the above
works generates a security design architecture considering
the security requirements and business constraints exploring
various security design alternatives in determining satisfiable
security configurations, which is the major thrust of this paper.

VII. CONCLUSION

Although security architecture design usually follows well-
known security principles, it is still performed in an ad-hoc
manner. In this paper, we present an automated framework,
ConfigSynth, for synthesizing correct and cost-effective net-
work security configurations. It formally models the network
topology, security requirements in terms of isolation, and
the organizational business constraints in terms of usability
and deployment cost, along with different invariant and user-
defined constraints. Then, the framework formalizes the se-
curity design synthesis problem as the conjunction of all the
requirements and constraints. Finally, it solves the problem us-
ing an efficient SMT solver that results in an optimal network
security design along with optimal placements of security
devices. We have evaluated ConfigSynth tool in different test
networks by varying the problem size and the number of
constraints. We find that ConfigSynth generates an optimal
security design within 800 seconds for a problem with 500
hosts. In the future, we would like to extend our model in
order to incorporate the host and application level isolation
patterns along with various design constraints.

REFERENCES

[1] L. de Moura and N. Bjørner. Satisfiability modulo theories: An appetizer.
In Brazilian Symposium on Formal Methods, 2009.

[2] L. de Moura and N. Bjrner. Z3: An efficient smt solver. In Conf. on
Tools and Algo. for the Construction and Analysis of Systems, 2008.

[3] E. Al-Shaer and H. Hamed. Discovery of policy anomalies in distributed
firewalls. In IEEE INFOCOM, 2004.

[4] H. Hamed, E. Al-Shaer, and Will Marrero. Modeling and verification
of ipsec and vpn security policies. In IEEE ICNP, 2005.

[5] L. Yuan et al. Fireman: A frameworkkit for firewall modeling and
analysis. In IEEE Symposium on Security and Privacy, 2006.

[6] Charles C. Zhang, Marianne Winslett, and Carl A. Gunter. On the safety
and efficiency of firewall policy deployment. In IEEE Symposium on
Security and Privacy, 2007.

[7] E. Al-Shaer et al. Network security configuration in a box: End-to-end
security configuration verification. In IEEE ICNP, 2009.

[8] P. Bera, S. Ghosh, and P. Dasgupta. Policy based security analysis in
enterprise networks -a formal approach. In IEEE TNSM, 2010.

[9] Steven Noel and Sushil Jajodia. Attack graphs for sensor placement, alert
prioritization, and attack response. In Cyberspace Research Workshop
of Air Force Cyberspace Symposium, 2007.

[10] R. Dewri et al. Optimal security hardening using multi-objective
optimization on attack tree models of networks. In ACM CCS, 2007.

[11] J. Homer and X. Ou. Sat-solving approaches to context-aware enterprise
network security management. In IEEE JSAC Special Issue on Network
Infrastructure Configuration, 2011.

[12] I. Kotenko and M. Stepashkin. Attack graph based evaluation of
network security. In International Conference on Communications and
Multimedia Security, 2006.

[13] S. Narain, G. Levin, V. Kaul, and S. Malik. Declarative infrastructure
configuration synthesis and debugging. In JNSM, 2008.

[14] et al. B. Zhang. Specifications of a high-level conflict-free firewall policy
language for multi-domain networks. In ACM SACMAT, 2007.

[15] B. Zhang and E. Al-Shaer. Synthesizing distributed firewall configura-
tions considering risk, usability and cost constraints. In CNSM, 2011.

