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Abstract—Remote Operating System (OS) Fingerprinting is
a precursory step for launching attacks on the Internet. As
a precaution against potential attacks, a remote machine can
take a proactive counter-strategy to deceive fingerprinters. This
is done by normalizing or mystifying the distinguishing behav-
iors in the packets. However, the unified modification causes
significant performance degradation to benign clients. Using a
game-theoretic approach, we propose a selective and dynamic
mechanism for counter-fingerprinting. We first model and analyze
the interaction between a fingerprinter and a target as a signaling
game. We derive the Nash equilibrium strategy profiles based on
the information gain analysis. Based on our game results, we
design DeceiveGame, a mechanism to prevent or to significantly
slow down fingerprinting attacks. Our game-theoretic approach
appropriately distinguishes a fingerprinter from a benign client
and mystifies packets to confuse the fingerprinter, while minimiz-
ing the side effects on benign clients. Our performance analysis
shows that DeceiveGame can reduce the probability of success of
the fingerprinter significantly, without deteriorating the overall
performance of other clients.

I. INTRODUCTION

Fingerprinting is the process of determining the OS of
a remote machine. To exploit a vulnerability of a remote
machine, an attacker must know the machine’s platform and
the running services in advance. Otherwise, it would take
many more attempts to be successful, which would render the
attacker susceptible to an intrusion detection system (IDS). In
the fingerprinting process, the adversary usually sends probes
to a target machine and analyzes the responses in order to
get platform critical characteristics (e.g., OS type, version,
installed patches, etc.) required for launching an attack.

Implementations of the networking protocol (TCP/IP) stack
often differ among operating systems, even among differ-
ent versions. Fingerprinters usually leverage the OS specific
characteristics of the stacks (often named OS signatures)
to identify the target’s OS. There are two main techniques
of fingerprinting: passive and active. A passive fingerprinter
secretly listens to the outgoing traffic from the server (e.g.,
SinFP, p0f, etc. [1], [2]), while an active fingerprinter sends an
arbitrary number of crafted probes and analyzes the responses
(e.g., Nmap, XProbe2, etc. [3], [4]). In both cases, a number of
tests are carried out on the outgoing packets from the target.
The test results are compared with the known signatures in
order to identify the OS platform of the target.

A number of counter-fingerprinting tools have been pro-
posed in the literature, such as Scrubber, IP Personality, Morph,
HoneyD, OSfuscate, IPMorph, etc. [5], [6], [7], [8], [9]. How-
ever, these tools experience many practical shortcomings. All

of the existing counter-fingerprinting tools alter outgoing pack-
ets of each connection irrespective of the sender’s behavior.
This exhaustive defense mechanism results in a significant per-
formance degradation mainly with respect to throughput and
connection quality. These techniques make modifications on
different TCP/IP fields in the packet header, among them some
are critical for performance. For example, the modifications on
Initial Window Size, Time-To-Live (TTL), and Don’t Fragment
Bit (DF) can make a significant throughput degradation. If
the receive-window size is too small, then the sender will
be blocked constantly as it fills out the receive window with
packets before the receiver is able to acknowledge [10]. If the
initial window size is too large, the sender will spend a long
time to retransmit the entire window every time a packet loss
is detected by the receiver [11]. Similarly, if the TTL value
is too small, packets may not reach the distant destination.
Throughput degradation can also happen if the DF bit is reset,
because this breaks the maximum transmission unit (MTU)
discovery. Moreover, the existing counter-fingerprinting tech-
niques make significant computational overhead for defenders.
IP-layer defense mechanisms (e.g., scrubbing) require frag-
ment reassembly and re-fragmentation. Any modification in
IP header requires adjustment of the header checksum. All of
these works increase the end-to-end communication latency
significantly.

Contributions: In order to solve the aforementioned prob-
lems of counter-fingerprinting techniques, in this paper we
propose a game-theoretic solution for counter-fingerprinting
that performs dynamic sanitization on selective packets. Our
solution increases the distortion of the fingerprinter’s knowl-
edge with acceptable overhead. We define a game model for
the fingerprinting process and corresponding countermeasure
between a fingerprinter and a target machine. Using a signaling
game framework [12], we analyze the interactions between the
fingerprinter and the target, while obtaining both pooling and
separating equilibria. This analysis gives us the opportunity
to find potential solutions for evading or delaying fingerprint-
ing, and to get the best strategy for the target. Using our
equilibrium analysis, we design a defense mechanism called
DeceiveGame, to deceive fingerprinting. As our game model
takes the performance of benign clients into consideration,
DeceiveGame balances between security and overhead. We
performed experiments to evaluate the performance of De-
ceiveGame, by comparing it to the non-strategic exhaustive
counter-fingerprinting mechanism. We found that in some
scenarios, our tool reduces the overhead by 60% compared
to the exhaustive defense, while it keeps the probability of
successful fingerprinting satisfactorily low.



Server  
(Target) 

Benign  
Sender 

Fingerprinter 

Fig. 1. Fingerprinting system model. A server (target) provides services to
several hosts. A fingerprinter tries to figure out the OS of the target.

The rest of this paper is organized as follows: In Sec-
tion II, we describe the system model along with different
fingerprinting tests and probes. In Section III, we present the
fingerprinting game model. In Section IV, we present the
solution to the game. By using the game theoretic results,
in Section V we propose the DeceiveGame mechanism. In
Section VI, we show the evaluation results of our proposed
mechanism. We discuss related works in Section VII and
conclude the paper in Section VIII.

II. FINGERPRINTING: SYSTEM MODEL

As shown in Fig. 1, we study a network where the target
is a server that provides services (e.g., web services) to its
client. Hence, many hosts communicate with the target to
access the service. We call these hosts senders. We assume
that an attacker tries to identify the OS of the target in
order to use the information for launching attacks against the
target. We call the attacker fingerprinter. A fingerprinter is also
a sender. The target wants to defend against fingerprinting.
Thus, the target (as a defender) needs to deal with benign
senders and fingerprinters simultaneously, while it does not
know explicitly about the sender type. In our model, a probe
denotes a particular type of packet that is sent to the target by
benign senders or fingerprinters. The attacker is able to attack
different targets and it may have different levels of interest (or
benefit) in them. However, the attacker has a certain interest in
a particular target. Hence, in this paper, we focus on a single
target. The attacker has a certain interest in a particular target,
while the target can consider all senders as a single entity (i.e.,
the target can only care about received probes, not the number
of senders). Hence, in this paper, we focus on modeling the
interaction between one fingerprinter and one target.

We assume that the fingerprinter should launch and com-
plete the fingerprinting in a period of time smaller than TM .
We define TM as the maximum time bound for fingerprinting.
The reason behind this assumption is that we consider other
defense mechanisms like moving target defense working on the
target, in addition to the counter-fingerprinting mechanism. In
the case of a moving target defense mechanism, the target’s
logical identification is intelligently or randomly changed (e.g.,
the change of IP address [13], [14]). We assume that the target
moves at each TM interval. If there is no secondary defense
mechanism for the target, then TM can be very large. In a
particular time instance, several senders can connect to the
target. The sessions of some senders do overlap. A sender can
start communication (i.e., fingerprinting) at any time during
a particular TM . Hence, TF is the period during which the
fingerprinting process continues. TF cannot be more than TM .
Though there is variable communication latency, we assume

TABLE I. A LIST OF SYMBOLS.

Symbol Definition

n, m Number of tests and probes, respectively
x Amount of effort (or time) put for fingerprinting

N, M Sets of tests and probes, respectively
Nx, Mx Sets of tests and probes used within time x, respectively
gi Potential information gain from ith test
G Average information gain required for successful fingerprint
di It denotes whether or not test i is defended by the target
π(x) Probability of success in fingerprinting in x effort
σ(x) Cost of fingerprinting in x effort
ϕ(x) Information gain possible from the probes sent in x effort, if no defense

is taken against them
θ(x) Belief of the target about the sender type (being a fingerprinter)
ψ(x) Potential defense cost due to taking defense against Nx

Q Acceptable performance degradation (due to defense)

that the sending time is the same as the receiving time. Table I
summarizes the notation used throughout this paper.

A. Fingerprinting Tests

We assume that a fingerprinter utilizes n types of tests for
fingerprinting. Let, N = {1, 2, 3, · · · , n} is the set of tests. For
each test type i ∈ N, we define the following properties:

1) Information gain (gi): This property denotes the potential
information gain [15] from the result of the test i, which
in turn expresses the strength of the test in fingerprinting.
We briefly describe the calculation of information gain in
the appendix. A test is a simple or complex mechanism
of checking one (or more) TCP/IP header field value(s),
sometimes response behaviors, with known results. Usu-
ally a particular test is possible from different probes.
These probes often give different information gains for
the test. However, we do not count some of these probes
as they give significantly lower gains compared to the
remaining probes. The probes that we count for a test
usually give very similar gains. Hence, we consider the
average of these gains as the gain expected from the
test. Note that gi basically represents the information gain
considering how much uncertainty the test i can remove
if the test is done alone. A test may not give the same
information gain given prior successful tests. This can
happen, especially, when two or more tests depend on
the same TCP/IP fields or response behaviors. We address
this issue later in the paper.

2) Credibility (vi): The credibility value (0 ≤ vi ≤ 1) shows
whether the test i is plausible as a TCP/IP packet. The
credibility depends on the credibility of the probe(s) used
for this test. Moreover, if a test requires a group of probes,
the test’s credibility is considered as low. Because, the
specific order or the fixed collection of the probes can
give an easy sign of a fingerprinting act.

3) Defensibility (bi): It is a boolean value denoting whether
the test i can be defended, so that the sender does not
get potential information gain from the test. There can
be some tests, which are not possible to defend, i.e., the
way of hiding the information associated to the tests is
not possible (or known) to the target.

4) Impact on performance (qi): Defending different tests
makes different impact on the performance of the sender
and target. For example, defending against TCP initial
sequence number does not degrade the sender’s perfor-
mance, whereas defending against initial TTL might have



TABLE II. A LIST OF TESTS USED TO FINGERPRINT REMOTE OPERATING SYSTEM.

ID (i) Name gi vi bi qi Related Probes Comment

1 DF: IP don’t fragment bit 1.1 1 1 1 Any of {1-6}
2 T: IP initial time-to-live (TTL) 2.5 0.9 1 1 Any of {1-12, 15}
3 W: TCP initial window size 4.7 1 1 1 Any of {1-6, 8}
4 S: TCP sequence number 1 1 1 0 Any of {1, 7, 8, 12}
5 A: TCP acknowledgment number 1.2 1 1 0 Any of {7-9, 11, 12}
6 F: TCP flags 1 1 0 - Any of {7-9, 11, 12} qi is undefined, since bi = 0
7 O: TCP options’ order 5 1 1 0 Any of {1-6, 8}
8 RD: TCP RST data checksum 0.7 1 1 0.5 Any of {1-9, 12} Costly defense mechanism
9 CC: Explicit congestion notification 0.3 0.9 0 1 {15}

10 CD: ICMP response code 0.9 0.5 1 0.5 {13, 14} ICMP packet
11 SP: TCP initial sequence number (ISN) 3 0.5 1 0 Any 4 of {1-6} Multiple (4) probes

TABLE III. A LIST OF PROBES USED BY A FINGERPRINTER.

j Name fj Comment

1-6 Pkt1-6 1 SYN, different TCP Options (e.g., MSS, SACK, NOP,
WScale, Timestamp) are selected in a order

7 T2 1 DF, Options (MSS, SACK, timestamp)
8 T3 1 SYN, FIN, URG, PSH, same Options as T2
9 T4 1 DF, ACK, same Options as T2
10 T5 0 SYN, same Options as T2, to closed ports
11 T6 0 Similar to T4 but to closed ports
12 T7 0 FIN, URG, PSH, same Options as T2, to closed ports

13-14 IE1-2 0 ICMP (different values for TOS and Code), DF
15 ECN 1 SYN, ECE, CWR, ECN, Options (MSS, SACK, etc.)

very bad impacts on the performance. We refer this as the
defense cost, which is crucial in case of benign senders.
We assume three qualitative values for qi, i.e., {1, 0.5,
0}, that define high, medium and no impact, respectively.

Table II presents a number of tests. We cite these tests
from [3], since the tests done by Nmap are comprehensive
and well known. The table also shows the properties of the
tests. For example, the test 7 has information gain 5 and high
credibility (vi = 1). This test is defensible (bi = 1) and it will
not cause any performance degradation (qi = 0).

B. Fingerprinting Probes

We assume that there are m types of probes. Let, M is
the set of probes, i.e., M = {1, 2, 3, · · · ,m}. We denote the
credibility of a probe j using fj . This property shows whether
the probe j is credible enough, so that the target would like
to respond to it (e.g., whether the probe is a valid TCP/IP
packet). For example, if a probe j is sent towards a closed
port, its credibility can be assumed to be zero. Any probe
without three-way handshaking are also not valid (fj = 0),
while TCP SYN based probes are valid TCP/IP packets (i.e.,
fj = 1). The test’s credibility depends on the probe(s) used
for the test. Usually the response of a probe can give more
than one test result. Hence, the potential gain possible from
the probe j is

∑
i∈Nj

gi. Here, Nj is the set of tests (Nj ⊆ N),
which are carried out from the probe j.

Table III shows some of the probes used in [3] with their
properties. The set M includes all kinds of packets in addition
to the probes used by a fingerprinter. The information gain may
be possible from the responses to the packets sent by a benign
sender. Since the benign sender does not do fingerprinting, the
accumulated gain from its packets is typically less than that
from the probes used by the fingerprinter.

III. FINGERPRINTING: GAME MODEL

In this section, we introduce our game-theoretic model
for fingerprinting. Game theory models strategic situations, in
which the success of one player in making choices depends on
the choices of other players [12]. The key point of our game-
theoretic analysis is to consider the strategic behaviors of the
target as well as the sender (especially from a fingerprinter’s
point of view). Moreover, game theory will help us to deal
with the lack of knowledge about the type of the sender, i.e.,
whether it is benign or malicious.

We model fingerprinting using a signaling game with a
target and a sender (i.e., a benign sender or a fingerprinter)
as players. Our choice of the signaling game is based on
the dynamic and incomplete information nature of the finger-
printing attack where the action of one player is conditioned
over its belief about the type of the opponent as well as its
observation on the actions of other player. As it is shown
in Fig. 2, we can represent the signaling game, similar to
two connected trees where branches and roots represent the
available actions for a given player and the belief about the
type of the opponent respectively. We define a fingerprinting
game for each connection (or a set of connections that are
suspected for coming from a single botnet). We assume that
if several connections exist, there are as many fingerprinting
games running in parallel. We analyze a single fingerprinting
game in the following. We describe different strategies for the
fingerprinter and the target. Next, we address how the belief
of the target about the type of the sender is updated. Finally,
we introduce their payoffs.

A. Strategy Model

Fingerprinter’s Strategy: In the fingerprinting game, the
fingerprinter determines the amount of information gain it
receives by the probes. Let x be the amount of time spent
by a sender for communicating with the target. From the
fingerprinter’s perspective, this is the time already given for
fingerprinting the target. We name x as effort. Hence, we
use effort and time interchangeably throughout the paper. We
assume that the fingerprinter’s cost of sending probes is trivial
with respect to the time spent for fingerprinting. The value of
x is bounded within 0 and TF .

We use x̂i to denote the earliest time instance when the
target receives a probe whose response potentially gives result
for the test i. We know that a single probe can do multiple
tests and multiple probes can do the same tests. Hence, Nx
(Nx ⊆ N) is the set of tests possible from the probes in Mx.
The sizes of Mx and Nx are nondecreasing with the time (i.e.,
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Fig. 2. Representation of a fingerprinting attack as a signaling game. The
players are a target and a sender. The belief of the target about the sender
type (i.e., whether a benign sender or a fingerprinter) is modeled by θ (see
Section III-B). Dashed lines show the uncertainly of the target about the type
of the sender. The target observes the actions of the sender, i.e., normal (L)
and greedy (Y ). The actions of the target (i.e., abstain (A) and defend (D))
are represented on each leaf of the tree (see Section III-A). The leaves of the
tree represent the payoffs of the players (see Section III-C). The first value is
the fingerprinter’s payoff. Note that we do not show payoff for the sender if
the target believes that it is a benign sender.
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Fig. 3. An example showing the relation between TM , TF and x, when the
maximum time for fingerprinting the target is TM = 7Sec and the time of
the game between the fingerprinter and the target is TF = 5 Sec.

x). The relationship between the probe set Mx and the test set
Nx is expressed as below:

Nx =
∪
j∈Mx

{ij,1, ..., ij,k},where 0 ≤ k ≤ m (1)

Here, {ij,1, ..., ij,k} is the set of tests that are possible from
the probe j. We know that there are few tests that require
the responses of multiple probes. A test of this kind is usually
associated with a specific set of probes. Hence, for such a test i,
Nx includes i, if and only if each of the probes required for
computing i exists in Mx. This is also fair to assume that, in
order to defend the test i, it is enough to sanitize the response
of one of the probes (e.g., the last received one) associated to
the test. To illustrate the above model we consider the case
where m = 7 and n = 10, i.e., N = {1, 2, · · · , 10} and M =
{1, 2, · · · , 7}, as shown in Fig. 3. In this example, we assume
TM is 7 seconds, TF is 5 seconds, and a probe is sent per
second. At x = 1, the sender sends (i.e., the target receives)
the probe 2, which can give result for the tests 1 and 4. Thus,
x̂1 = 1 and x̂4 = 1, while M1 = {2} and N1 = {1, 4}. At
x = 2, the sender sends the probe 6, which can give results
for the tests 3 and 4. So, x̂3 = 2, while already we saw x̂4.
Then, M2 = {2, 6} and N2 = {1, 3, 4}.

We define the set of actions for the sender (i.e., a finger-
printer) as sF = {Greedy,Normal}. When the fingerprinter
plays Greedy, it is avaricious for information and it sends
probes to get more information from the target. On the other
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Fig. 4. Strategy of the sender. The sender is playing Greedy if it asks
information more than ϕB . Otherwise it plays Normal.

hand, with the Normal strategy the fingerprinter sends the
probes that can give little or no information gain. Note that the
expected behavior from a benign sender is Normal, because it
communicates to the target only to receive a service. We define
a simple threshold-based mechanism to distinguish these two
strategies. In this respect, we define G as a portion of the total
potential information gain (i.e.,

∑
i∈N gi) as the average gain

that is required to identify the OS of the target. We use GB
and GF to denote the total expected gain within the game
period with respect to a benign sender and a fingerprinter,
respectively. Obviously, according to the expected behavior,
GB < G ≤ GF .

Let us assume that a fingerprinter selects a probe from the
probe set at each step (at a particular x during TF ) of the game.
Considering GB , we define ϕ(x) as the observed behavior
from the sender at x. We also define ϕB(x) as the expected
behavior from a benign sender. The accumulated potential
information gain asked by the sender till x is represented by
ϕ(x), where ϕ(x) =

∑
i∈Nx

gi. The expected behavior ϕB(x)
is computed as follows:

ϕB(x) =

x∑
i=0

ϕB0 r
i (2)

Here ϕB0 is the initial value, while ϕB0 r
i is the expected incre-

ment of gain at time i. The value of r (0 < r < 1) is approxi-
mately computed considering the equality:

∑TM

i=0 ϕ
B
0 r

i = GB .

The reason behind taking this equality is that with the time,
the increase in asking gain (i.e., the rate of asked gain) is
expected to be reduced due to the using of same types of
packets multiple times. The target expects the total asked gain
within a particular time (effort) to be limited. As shown in
Fig. 4, we assume that if ϕ(x) > ϕB(x), the sender plays
Greedy, otherwise it plays Normal.

Target’s Strategy: We define the set of actions for the target
as sT = {Defend,Abstain}. The action Defend means that
the target defends the test, e.g., by sanitizing the response of
the associated probe (or by sending confusing or misleading
response), so that the sender does not receive information from
the test. In the case of Abstain, the original response remains
unmodified and the sender receives information associated to
the test. The term di(x) denotes the target’s strategy against the
test i at x. We consider di = 1 when target decides to Defend,
while di = 0 in case of Abstain. The target’s strategy is
to select one of these actions, so that (i) the success in
fingerprinting by the sender is low (as far as possible) when it
is a fingerprinter, and (ii) the defense cost (i.e., the performance
degradation experienced by the sender) is reasonably low, if it
is a benign sender.

The target may require to take action against a particular
test i more than once, since multiple probes often have the
same test in common or multiple times the same probe might



be sent. We consider that the subsequent defense strategy for
the same test will remain the same (i.e., di(xi) = di(x̂i), where
xi > x̂i) during TF . Moreover, since a probe usually give
results for more than one test, the target often require to take
decisions for multiple tests at a time.

The fingerprinting game is played at each time instance
x when a probe is received at the target. Then, the optimal
strategy of the target will be defined (i.e., whether play Defend
or Abstain) by finding the equilibrium of the signalling game.
We present the equilibrium in Section IV-B.

B. Belief Model

In our fingerprinting game, the target does not know
whether the sender is a fingerprinter or a benign sender. The
strategy of the target depends on its belief about its opponent,
as shown in Fig. 2. We define θ(x) (0 ≤ θ(x) ≤ 1) as the
belief of the target about the sender type at x. A larger value
of θ denotes a higher possibility of being a fingerprinter.

The value of θ is updated with x, particularly after receiv-
ing a probe (i.e., watching the sender’s action). In order to
update θ(x), we use ϕ(x).

θ(x) = min(1,
e(β+ϕ(x))/G

F − 1

e− 1
) (3)

Note that we take into account the initial value of the belief
(i.e., θ(0)) using the nonnegative value β. The larger is β, the
higher is the initial belief about the sender towards being a
fingerprinter. Typically, β is very small, even zero, compared
to GF . We consider the exponential function of the potential
information gain to compute belief, so that a small increase in
gain has more effect on belief if accumulated gain is already
high. Because, though the probes used by benign senders also
have information gain, the accumulated gain is expected to
be low. Other convex function can be used given the target’s
objectives. The more the target is keen about its security, the
higher the initial value of θ. Fig. 5 shows the impact of ϕ and
β on θ. A list of known (or expected) benign and malicious
hosts can be used to set the prior belief about a sender.

C. Payoff Model

Benefit: Let P be the benefit that the fingerprinter will receive
if it succeeds in fingerprinting, and π(x) be the probability of
success after giving x effort. Then, the expected benefit for a
fingerprinter is π(x)P . The value of P captures the importance
of the target. We assume that both players perceive the same
importance of the target. In our model, we assume that P is
equal to 1. Hence, the expected benefit of the fingerprinter is
π(x). We now describe the calculation of π(x).

If a probe for a test i is sent at x̂i effort, we use the term
πi(x̂i) for representing the probability of success received from
the test. We already mentioned that the potential information
gain from a test may depend on the prior tests. We use the
notation gi(x̂i) representing the information gain received from
the test i, given the tests done prior to x̂i. Hence, πi(x̂i) is
computed as follows:

πi(x̂i) =
gi(x̂i)− gi(x̂i)di(x̂i)bi

G
(4)
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Fig. 5. The impact of ϕ and β on θ. Here, we consider GF = 10.

Here, gi(x̂i) is the potential information gain from the test i,
if it is successful, taking into account the already successful
(not defended) tests till x̂i ({k |(k ∈ Nx̂i) and (dk(.) = 0)}).
If we assume that the the dependency is negligible, i.e., the
information gain is independent of the prior successful tests,
then ∀x gi(x) = gi. This will simplify Equation (4) as follows:

πi(x̂i) =
gi − gidi(x̂i)bi

G
(5)

The target selects the optimal di(x̂i) at the equilibrium,
which depends on bi, vi, qi, x̂i, and the belief (θ) about the
sender type. The belief follows the prior behavior of the sender
based on the probes received by the target. We compute the
cumulative probability of success after x effort as follows:

π(x) =
∑
i∈Nx

πi(x̂i), where x̂i ≤ x (6)

We consider a zero-sum benefit model. The more bene-
fit, i.e., the probability of success, the fingerprinter receives
(π(x)), the less benefit the target obtains (−π(x)).
Cost: Let σ(x) be the cost incurred by the fingerprinter after a
given x effort. The cost of processing or transmitting a packet
is very trivial to be considered in the fingerprinting cost. Since
all the probes and tests are already known, the fingerprinter
only cares about the time it gives for fingerprinting. We define
σ(x) as a simple linear concave function of x as follows:

σ(x) = α0 + α1x (7)

Here, α0 is the initial cost of attacking a target and α1 is
the cost per time unit. These coefficients take the same unit
as of the budget. If we take the initial cost as 0 (α0 = 0)
and the cost per time unit as 1 (α1 = 1), then the cost is
just the time. The cost equation can be quadratic or even
exponential. However, these types of cost equations will make
a fingerprinter to fingerprint within a short time, i.e., a higher
probing rate, which is subject to catch by an IDS.

We know that defending a test i may incur cost (i.e., the
impact on performance), which is denoted by qi. Hence, the
defense cost at x̂i for the test i is:

ψi(x̂i) =
qidi(x̂i)vi

Q
(8)

Here, Q represents the defense cost that is intolerable in
terms of the minimum level of performance. The use of vi in
computing ψi(x) expresses the fact that less credible probes
are not expected to be sent by a benign sender. Hence, there



is no need to consider the defense cost due to defending the
tests associated to these probes. The cumulative defense cost
after x effort is computed as follows:

ψ(x) =
∑
i∈Nx

ψi(x̂i), where x̂i ≤ x (9)

Payoff: We model the fingerprinter’s payoff by uF as follows:

uF (x) = π(x)− σ(x) (10)

Note that both π(x) and σ(x) are normalized values between
0 and 1. We also model the target’s payoff by uT as shown in
the below:

uT (x) = −λπ(x)− (1− λ)ψ(x) (11)

We use λ (0 ≤ λ ≤ 1) to denote the preference of defense
over the defense cost. If the target does not have a specific
choice, then λ is 0.5.

In Fig. 2, we show the payoffs of the fingerprinter and the
target at a particular x for different combinations of strategies.
In the case of Greedy (Y ) strategy of the sender at x, let us
assume that the target chooses Abstain for the test corresponds
to Y . Then the received benefit by the fingerprinter is πAY (x) =
gY /G, since dY = 0 in Equation (4). In this case, the target
has no defense cost, i.e., ψAY (x) = 0 (see Equation (8)). If
the target chooses Defend (i.e., dY = 1), then the fingerprinter
receives the benefit, πDY (x) = (gY − gY bY )/G and the target
pays the defense cost, ψDY (x) = qY vY .

IV. ANALYSIS OF THE FINGERPRINTING GAME

In this section, we first introduce the methodology for
solving a signaling game. Then we present the equilibria of
our game and their interpretations.

A. Analysis Methodology: Perfect Bayesian Equilibrium

To predict the outcome of the fingerprinting game, one
could use the well-known concept of Nash Equilibrium (NE):
A strategy profile constitutes a Nash equilibrium if none of
the players can increase its payoff by unilaterally changing
its strategy. In the case of incomplete information games
(e.g., signaling games), the players are unaware of the payoffs
of their opponents. Hence, we adopt the concept of Perfect
Bayesian Equilibrium [12].

Definition 1: A perfect Bayesian equilibrium consists of
strategies and beliefs satisfying the following requirements:

1. At each information set, the player with the move must
have a belief about which node in the information set has
been reached by the play of the game.

2. Given their beliefs, the players’ strategies must be sequen-
tially rational.

3. At information sets on the equilibrium path, beliefs are
determined by Bayes’ rule and the players’ equilibrium
strategies.

4. At information sets off the equilibrium path, beliefs are
determined by Bayes’ rule and the players’ equilibrium
strategies where possible.

Moreover, an equilibrium is called a separating equilibrium
in signaling game, if each sender type sends a different signal.
An equilibrium is called a pooling equilibrium if the same
signal is sent by all types.

B. Fingerprinting Game: Results

Considering the above definition of the perfect Bayesian
equilibrium, we solve the fingerprinting game to find possible
separating and pooling equilibria. Theorem 1 and Theorem 2
identify the best strategies for the players in the fingerprinting
game. Due to the limited space, we refer the reader to our
technical report available in [16] for the proof of theorems.

Theorem 1. [(Greedy,Normal), (Defend,Abstain)]1 is
the only separating equilibrium of the fingerprinting game.

Theorem 1 shows that at the separating equilibrium the
target defends (i.e., plays Defend) if the sender (expected to
be a fingerprinter) plays Greedy. It plays Abstain if the sender
(expected to be benign) plays Normal. Theorem 2 presents
the pooling equilibrium along with necessary conditions. Here,
the target believes that the sender plays Greedy for each given
type and the expected behavior of the target is Defend at this
equilibrium. In this case, the posterior probability of a sender
being a fingerprinter is θ. If the senders of both types would
play Normal and the posterior probability of a sender being
a fingerprinter would be assumed as µ, the expected behavior
of the target would be Abstain.

Theorem 2. [(Greedy,Greedy), (Defend,Defend), θ]
and [(Normal,Normal), (Abstain,Abstain), µ] are the
pooling equilibrium of the fingerprinting game, if the following
conditions hold:

1. θ/(1− θ) ≥ (1− λ) qY vY /(λ gY bY /G)

2. µ/(1− µ) ≤ (1− λ) qL vL/(λ gL/G)

3. gL = 0 or bY = 0

V. DeceiveGame MECHANISM

The existing counter-fingerprinting mechanisms do not fol-
low any dynamic strategy in defense mechanism. They always
take same strategy, i.e., defend a particular probe irrespective
of its potential impact, the possible sender type, and the target’s
belief. We design a mechanism, named DeceiveGame, that
follows optimal strategy selection based on the equilibrium
analysis of the fingerprinting game to deceive attackers. De-
ceiveGame can be implemented on the target or between the
sender and the target similar to firewall. This mechanism
operates at the network layer, because it requires to work on
the TCP/IP headers of the packets. DeceiveGame intercepts
packets, applies necessary modifications to the outgoing pack-
ets, and forwards the packets to the sender.

A. Strategy Selection Mechanism

DeceiveGame follows Algorithm 1 in order to find the
strategy against a received probe. Though a benign sender’s
behavior is mostly Normal, it can sometimes behave Greedy.
On the other side, a fingerprinter can sometimes act Normal
to fool the target. Hence, it is important to consider the belief
to obtain the optimal strategy. Since in the pooling equilibrium
the belief is considered explicitly, we apply Theorem 2 in
DeceiveGame. We divide S, the set of tests that are possible

1The sender strategy profile (a, b) means that it plays a for the type θ and b
for the type 1−θ. In case of the target, (a, b) means that it plays a following
the Greedy action and b following the Normal action of the sender.



Algorithm 1 Strategy Selection
Require: Compute the sets S1 and S2, such that S1 = S ∩ Nx and S2 = S \ Nx.
Require: Apply the same strategy (which has already been taken) for each test i ∈ S1.
Require: Sort S2 considering the following priority:

1) Tests with b = 0 comes in the beginning of S2, irrespective of g.
2) Tests with b = 1 goes to the end according to q and v. Tests with the least

realized overhead (i.e., qv) goes to the most right.
3) Tests with b = 1 and same qv are sorted in increasing order based on g.

Require: Let ϕ′ be the current ϕ(x). Compute θ(x) and ϕB(x).
1: for i ∈ S2 do
2: Add gi to ϕ′.
3: if bi is false then
4: di = 0.
5: else
6: if (vi = 0 or qi = 0) then
7: di = 1.
8: else
9: if (Sender Plays Greedy, i.e., ϕ′ > ϕB ) then

10: di = 1, if the conditions of Theorem 2 are true;
otherwise, di = 0.

11: else
12: if (Sender Plays Normal, i.e., ϕ′ ≤ ϕB ) then
13: di = 0, if the conditions of Theorem 2 are true;

otherwise, di = 1.
14: end if
15: end if
16: end if
17: end if
18: Derive D such that D = {di|i ∈ S}.
19: Update Nx considering S2.
20: Update ϕ(x).
21: end for

from the received probe, into two sets: S1 and S2. The first
set consists of the tests, which are already seen in the earlier
received probes, while the second set represents the new tests.
Since the actions corresponding to the tests in S1 have been
already selected and applied on the tests, the same strategy
will be followed for them. Hence, we need to find the actions
for the tests in S2. We sort the tests in S2 considering their
properties as shown in Algorithm 1. We defend the packets,
which are not valid (v = 0) or have no defense cost (q = 0).
For the rest of the tests, we apply Theorem 2 to select the
optimal strategies. Trivially, the value of µ is the same as θ.

Note that the values for different game parameters, such
as G, ϕB0 , λ can be defined based on the guidelines and
prior knowledge. For example, the small value of λ shows
that the target is very sensitive to performance degradation.
More discussions about the parameter selections can be found
in [16]. In order to defend a probe, DeceiveGame modifies the
appropriate fields (or behaviors) in the response to the received
probe based on the strategy set D.

B. Implementation Issues

The tests can be defended in different ways. In some cases,
DeceiveGame can do normalization in the responses similar to
the methodology of protocol scrubber [5]. In some cases, it can
choose random values. For the probes having low credibility,
e.g., the probes sent without three way hand-shaking or towards
closed ports, can be defended easily by sending no reply. Since
these defense methods are not the aim of the paper, their
description is not given here.

VI. EVALUATION

We evaluated DeceiveGame in two stages. First, we an-
alyzed the performance of the tool against conventional fin-
gerprinting mechanisms. We also analyzed some important

TABLE IV. PARAMETER VALUES USED IN SIMULATIONS

n m G GB GF ϕ0 β Q λ TM

16 20 7 0.5 ×G 1.5×G 0.5 ×GB 0 3 0.5 25s

characteristics of the defense mechanism. Then, we verified
whether our tool can evade Nmap [3].

A. Performance and Characteristic Analysis

We analyzed DeceiveGame using emulation and simula-
tion experimentations. Various fingerprinting scenarios were
created where fingerprinters and benign senders send packets
to the target. Experiments were done under three different op-
tions: (1) without defense (d = 0), (2) using exhaustive defense
(d = 1), which represents the existing defense strategies, and
(3) using our proposed DeceiveGame. We evaluated the results
using the following metrics: (1) effectiveness that measures
the probability of fingerprinting success, (2) overhead that
measures the potential defense cost realized by the target as
a result of sanitizing responses, and (3) intrusiveness that
measures the number of defended probes.

Methodology: In our experiments, we created a random traffic
that contained all the fingerprinting probes as shown in Table
III. The probe type can be selected based on four fingerprinting
models (i.e., attack models) as follows: (1) naive fingerprinter
that selects probes in an increasing order of information gain,
(2) greedy fingerprinter that first selects the probes with higher
information gain, (3) random fingerprinter that selects probes
randomly from the unused tests using uniform distribution, and
(4) hybrid fingerprinter that is a combination of the previous
models. In hybrid model, a fingerprinter can start attacking
with random model and next it can choose greedy model after
spending 50% of its possible efforts. We used the random
model in the experiments unless the fingerprinting model is
explicitly specified. The properties of the tests and associated
probes are the same as those shown in Table II and Table III,
respectively. We assume that all other packets do not provide
any information gain (i.e., entail no fingerprinting test). We
generate benign traffic using archives of web traffic [17].
Table IV shows the values that we considered for different
game parameters. We already conducted simulations with other
values and the results showed the similar behaviors as in the
following.

Performance Analysis: Fig. 6(a) shows that the potential suc-
cess of fingerprinting (i.e., π(x)) in the case of DeceiveGame
is close to that of the exhaustive defense mechanism and it is
within the 20-25% difference. This success probability does
not allow for a successful determination of the target. Note
that repeating a probe multiple times does not increase the
fingerprinting success as it does not contribute to the infor-
mation gain. While DeceiveGame performs reasonably well in
defeating fingerprinting, it remains highly efficient in reducing
the defense cost (i.e., ψ(x)) incurred by the exhaustive defense
mechanism. Fig. 6(b) and Fig. 6(c) show the associated results.
Fig. 6(b) shows that DeceiveGame reduces the overhead up
to 60% as compared to the exhaustive mechanism. Fig. 6(c)
shows that DeceiveGame defends fewer number of probes (as
well as tests) than the exhaustive mechanism, especially in case
of benign senders. These results prove that our mechanism is
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Fig. 6. (a) Comparison of general defense mechanisms w.r.t. success of fingerprinting, (b) Potential defense cost in different defense mechanisms, (c) Number
of probes/tests defended in different defense mechanisms.
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Fig. 7. Impact of (a) the potential information gain on the probability of success, (b) the potential defense cost on the probability of success, (c) different
attack models (i.e., the order of the probes based on potential gain) on the probability of success.

able to discriminate between benign senders and fingerprinters,
and it adjusts the defense mechanism accordingly in order to
outperform conventional fingerprinting countermeasure mech-
anisms.

Characteristic Analysis: We analyzed the impact of potential
information gain of the fingerprinter on the target’s belief about
the sender type and thus on the fingerprinter’s success. We
observed (as shown in Fig. 7(a)) that with the increase of the
potential gain, the belief (θ) that the sender is a fingerprinter.
The impact of the potential defense cost on the success
probability is shown in Fig. 7(b) in two different credibility
levels. The more is the cost (i.e., performance degradation)
for defending a test, the higher is the success probability
from the test. However, in case of a low-credible probe, this
impact is insignificant (as discussed in Section III-C). The
impact of attack model (i.e., greedy, naive, and random) on the
fingerprinting success is presented in Fig. 7(c). We observed
that sending probes with higher information gain (e.g., in
greedy model) obtain lower success probability in the long run.
Because even a small increase in the potential gain might create
a significant impact on the belief, given that the accumulated
gain is high.

B. Accuracy Verification

We implemented the prototype of DeceiveGame using C
programming language. We used Win Divert [18], a user-
mode packet capture-and-divert package for windows, in this
implementation. The implemented prototype was installed in

TABLE V. THE OUTPUT (PARTIAL) OF NMAP

OS Fingerprinting Command: nmap -O -v 152.15.106.207

Nmap Output without DeceiveGame:
MAC Address: D4:BE:D9:9A:74:3A (Dell)
Running: Microsoft Windows 7 | Vista | 2008
OS details: Microsoft Windows 7 Professional, · · · · · · · · ·
Nmap Output while DeceiveGame is running:
MAC Address: D4:BE:D9:9A:74:3A (Dell)
Too many fingerprints match this host to give specific OS details

a host, A, where Windows 7 OS was running. We installed
Nmap [3] in another host, B. We tried to fingerprint A from
B in two ways: with and without executing DeceiveGame on
A. The outputs of both cases are presented in Table V. We
found that DeceiveGame successfully disrupted Nmap from
understanding the OS of A. In this experiment, we observed
that the belief about the sender (i.e., θ) reached high (close
to 1) within 3 probes sent by Nmap. As a result, most of the
probes are defended.

VII. RELATED WORK

Different tools proposed in order to evade from fingerprint-
ing. following either of two basic approaches: (i) converting
ambiguous traffic from a heterogeneous group of hosts into
sanitized packets, and (ii) providing the ability to have different
(OS) personalities. The TCP/IP stack normalization approach
was introduced with Scrubber [5], which is the first well-
known counter-fingerprinting tool. It removes ambiguities from



TCP/IP traffic that gives clues to a host’s operating system.
It normalizes the outgoing traffic mainly on the fields, such
as the order of TCP options, the pattern of initial sequence
numbers, the initial window size. Changes of some fields
like DF flag, window size, TTL affect the performance. IP
Personality [7] introduced the idea of emulating different
personalities to evade fingerprinting tools. Different counter-
fingerprinting tools like [8], [19], [6], also follow the same
idea. IP personality especially is a patch for Linux 2.4 kernel
that gives an user the ability to change different characteristics
of TCP/IP stack. However, the emulated TCP/IP stack can
make the communication weaker than the original one.

IpMorph [6] is built combining the concept of Scrubber and
IP Personality. Its objective is to hide the computer’s identity
from the fingerprinting tools and to impersonate the identity
of a different less interesting system, so that the fingerprinter
finds the system less appealing. The main drawback of this tool
is its complex mechanism. OSfuscate [9] is a small counter-
fingerprinting tool that allows to change some registry values in
order to reconfigure the TCP/IP stacks. Its usability is limited
only to Windows XP/Vista. However, none of these above
mentioned tools is strategic in defense mechanism and they
treat a benign sender similarly to a fingerprinter.

VIII. CONCLUSION

Defense against remote OS fingerprinting is the precaution
against potential remote attacks. Since a sender can be a
benign one rather than a fingerprinter, always defending can
cause considerable performance degradation in the case of
benign senders. Our proposed game-theoretic defense mech-
anism, DeceiveGame takes the sender type into consideration
and performs selective defense actions based on the belief
about the type. Therefore, the proposed mechanism is suitable
for defense against an unknown opponent. Most importantly,
DeceiveGame works differently against a fingerprinter and a
benign sender. It keeps the fingerprinting success low in case
of a fingerprinter, while it creates less performance degradation
in case of a benign sender. We evaluated our tool prototype
by simulating different known probes. We found that the tool
outperforms conventional defense mechanisms by reducing the
overhead up to 60%, while the probability of fingerprinting
success remains reasonably low.
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APPENDIX

The calculation process of information gain from a test presented
in [15] is very briefly described here. Let X be a random variable that
describes the classification of the OS of a target system. The entropy
in X is the amount of uncertainty existing in classifying an unknown
system. Let X can take n possible values, where n is the number of
all possible operating systems. Each value has the probability p(xj),
1 ≤ j ≤ n. So, the entropy is calculated as follows:

H(X) = −
n∑

j=1

p(xj) log2 p(xj)

Let Testi be a random variable that describes the result of
applying the test i to the probe response from a target system. The
conditional entropy of X (i.e., H(X|Testi)) is calculated given that
Testi is successful. The mutual information of X and Testi is the
amount of information one gains about X if it knows the result,
Testi. This is termed as Information Gain. This can be simply defined
as the difference between the entropy before taking the test and the
entropy conditioned on the value of the test. The conditional entropy
H(X|Testi) is computed as follows, where Testi is considered
to take on ni values, each (testik ) with probability p(testik ),
1 ≤ k ≤ ni:

H(X|Testi) = −
ni∑
k=1

p(testik)

n∑
j=1

p(xj |testik ) log2 p(xj |testik)

Thus, the Information gain on X by Testi is

H(X;Testi) = H(X)−H(X | Testi)

In our model, gi denotes H(X;Testi). To calculate information
gain one needs three probabilities: p(xj), p(testik) with 1 ≤ k ≤ ni,
and p(xj | testik) with 1 ≤ j ≤ n and 1 ≤ k ≤ ni. The information
gain shown in Table II is derived by assuming that each OS is equally
likely p(xj) = 1/n. We know that OS distributions are not uniform
usually. Though the given OS distribution might change the gain
values [15], which in turn may change the course of playing the game,
our game model and the solution process remain the same. Moreover,
the administrator of the target network knows the OS distribution in
the network, while the attacker may not know the correct one. Hence,
the target has an advantage over the attacker in playing the game.


