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Abstract—Advanced Metering Infrastructure (AMI) is the core
component in a smart grid that exhibits a highly complex
network configuration. AMI comprises heterogeneous cyber-
physical components, which are interconnected through different
communication media, protocols, and security measures. They
are operated using different data delivery modes and security
policies. The inherent complexity and heterogeneity in AMI
significantly increases the potential of security threats due to
misconfiguration or absence of defense, which may cause devas-
tating damage to AMI. Therefore, there is a need for creating
a formal model that can represent the global behavior of AMI
configuration in order to verify the potential threats.

In this paper, we present SmartAnalyzer, a security analysis
tool, which offers manifold contributions: (i) formal modeling of
AMI configuration that includes device configurations, topology,
communication properties, interactions among the devices, data
flows, and security properties; (ii) formal modeling of AMI
invariants and user-driven constraints based on the interdepen-
dencies among AMI device configurations, security properties,
and security control guidelines; (iii) verifying the AMI configu-
ration’s compliance with security constraints using a Satisfiability
Modulo Theory (SMT) solver; (iv) reporting of potential security
threats based on constraint violations, (v) analyzing the impact
of potential threats on the system; and (vi) systematic diagnosing
of SMT unsatisfiable traces and providing necessary remediation
plans. The accuracy and scalability of the tool are evaluated on
an AMI testbed and various synthetic test networks.

Index Terms—Advanced metering infrastructure, security
analysis, formal verification.

I. INTRODUCTION

Smart grids provide innovative and efficient energy manage-
ment services, which offer operational reliability and value-
added advantages to both customers and energy providers.
Advanced metering infrastructure (AMI) in a smart grid
provides two-way communication between smart meters and
utility servers (headend systems) through intelligent collectors,
which allows energy service providers as well as customers to
monitor and control power consumption remotely [1], [2]. An
AMI network also consists of different kinds of hosts, i.e.,
the customers’ hosts and the energy provider’s internal and
external users’ hosts. These devices communicate with one
another using various communication media and protocols,
and different security measures, such as firewall based access
controls, IPSec based security tunnels, and IDS based payload
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Fig. 1. A typical AMI smart grid network.

inspection. Energy usage data is transferred from meter to
collector and collector to headend following different modes
of data delivery under the control of alternative organizational
security policies. Cyber attacks on such networks due to in-
appropriate or weak configurations have the potential to cause
critical damages including power outages and destructions of
equipment [3], [4].

The potential misconfigurations and security threats in AMI
increase significantly, due to the inherent complexity and
interdependencies of device level configurations with various
security parameters. There is a pressing need for automated
security analysis to identify misconfigurations as well as
security threats proactively in AMI. In this paper, we present
an automated security analysis tool for AMI, named Smar-
tAnalyzer, that creates a logic-based formal model of AMI
behavior based on AMI device configurations and verifies the
compliance of this model with system invariants and security
requirements using constraint satisfaction checking. The tool
generates a comprehensive threat report along with a potential
remediation plan. We measured the performance of our tool
by running it on an AMI testbed and various synthetic test
networks. Here, we extend the SmartAnalyzer tool presented
in our past work [5] to include a new set of security controls
and analytic capabilities. The major extensions are as follows:

1) Our framework provides a formal logic based modeling
of various new security constraints, in addition to the
constraints specified in [5]. The constraints newly added
to the framework are the following:

• Authenticated communication constraint
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Fig. 2. Push-Pull mode of Data Delivery in Smart Grid

• Secure tunnel constraint
• Priority delivery constraint
• Fault-tolerant constraint
• Domain boundary protection constraint

2) We present a comprehensive diagnosis of misconfigu-
rations or security weaknesses by analyzing constraint
violation results (SMT traces) and generating necessary
remediation plans. We show an example in order to
explain the process of trace analysis.

3) We briefly show an approach for the qualitative impact
analysis of a potential security threat by defining three
impact factors: (i) the loss due to the threat occurrence,
(ii) the easiness of the threat execution, and (iii) the cost
for the remediation of the threat.

The rest of the paper is organized as follows. We discuss
the background, challenges, and objective of our research in
Section II. We describe the architecture of SmartAnalyzer in
Section III. We present the formal modeling of AMI topology
and the components in Section IV. We present the modeling
of various invariant and user-driven security constraints in
Section V. In Section VI we describe the investigation of
constraint verification results in terms of diagnosis and impact
analysis. We present the evaluation results of our tool in
Section VII. We briefly discuss about the limitations, extensi-
bility, and deployment of SmartAnalyzer in Section VIII. We
describe the related works on AMI security in Section IX. We
conclude the paper with the summary in Section X.

II. BACKGROUND AND CHALLENGES

A. AMI Complexity

The general structure of an AMI network is shown in
Fig. 1, which usually consists of millions of smart meters,
thousands of intelligent data collectors, and one or more
headend systems as the main components. A meter establishes
a secure connection with a specific collector and reports
energy usage data periodically. A collector forwards the data
received from a group of meters to a headend over a secure
connection. It also forwards control commands and patches
from the headend to the meters. A meter may be connected to
a collector directly or through another meter. The latter case
occurs in a mesh network of meters, where intermediate meters
relay the data to the collector. A large number of collectors
are connected with a headend usually through a proprietary
but third party network. There is one or more firewalls for
restricting the access between AMI and the energy provider’s
network. There are two data delivery modes, which can be
used between meter and collector, and between collector and

Fig. 3. Root sources of Smart Grid Security Threats

headend: (i) push-driven mode (simply, push mode) in which
a meter or a collector reports data periodically based on a
pre-configured delivery schedule, and (ii) pull-driven mode
(simply, pull mode) in which a meter or a collector reports
data only upon receiving a request. In the pull mode, requests
are usually sent periodically following a schedule. In practice,
the push mode is used between meter and collector, while the
pull mode is used between collector and headend (Fig. 2).

AMI networks are more complex than traditional networks
mainly due to the following reasons. First, AMI is a hybrid
network consisting of (1) heterogeneous devices (e.g., meters,
collectors, firewalls, routers, IPSec gateways, etc.), (2) vari-
eties of links (e.g., power lines, wired, and wireless), and
(3) different protocols (e.g., LonTalk protocol [6] between
meter and collector, and TCP/IP protocol between collector
and headend). Second, an AMI network involves varieties of
data stream types (such as power usage data, control com-
mands, software patches), which exhibit different priorities and
resource requirements. Third, unlike the policy-based Internet
forwarding, data delivery in AMI is either time-driven or
request-driven and it follows specific schedules. For the pur-
pose of successful delivery of data, AMI must be configured
carefully to synchronize the data delivery without overflowing
the network or its devices. Moreover, an AMI network must
be accessible from the utility network for different purposes
like control and patch management. Energy users from Home
Area Networks (HANs) can also access the AMI network via
the Internet or smart meters.

B. Potential Threats on AMI

The inherent complexity of integrating multiple heteroge-
neous systems in AMI significantly increases the potential
of security threats, which can cause massive and extremely
devastating damage. The root causes of security threats on
AMI have been shown in Fig. 3.There are two main causes of
threats on AMI [7]. The first is the misconfiguration that might
cause inconsistency, unreachability, broken secure tunnels, etc.
It is well documented that configuration errors cause 50%-
80% of vulnerabilities in cyber infrastructure [8]. The second
is the weak or absence of security controls that can cause
cascaded cyber attacks, such as scanning, denial of service
(DoS), jamming, etc. Threats might come due to operational
errors also. For example, if the data delivery is request-driven
rather than time-driven, an operational error, such as requesting
data from a large number of collectors at the same time may
lead to cyber breakdown. We classify the potential threats on
AMI into the following categories:
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Reachability and Integrity Threats. To achieve successful
data delivery, reachability must hold between the sender and
the receiver. In addition, data should be delivered satisfying
end-to-end integrity. Its violation not only can cause incorrect
billing but may also launch malicious control commands
towards AMI. Moreover, inconsistencies in authentication and
encryption parameters of the communicating devices may
cause service disruption. One important aspect of the reach-
ability verification is to check the correctness of any IPSec
tunnel existing in the path.

Availability Threats. Improper scheduling of data delivery
between meters and collectors can lead to buffer overflow and
data loss in the collector side. This can cause delay in data
delivery, even data loss at the endpoints due to limited link
bandwidth. For example, if UDP protocol is used between
collector and headend, improper scheduling may allow a large
number of nodes to transfer data to a headend, which can
flood links on the path and consequently cause data loss. The
use of TCP protocol (TCP based communication) may create
traffic congestion, which in turn leads to delay in data reporting
and data loss on the sender side (if data rate is higher than
the delay). The main purpose of AMI is to deliver clients’
power usage data to the provider’s side. Hence, these resource
availability threats can be very devastating.

Typical Cyber Threats. Typical cyber threats on AMI are
endpoint DoS, link flooding, wireless link jamming, etc. For
example, a large number of compromised collectors can launch
a distributed DoS attack to a headend. It is infeasible to
provide protection against cyber threats from any number
of compromised collectors. We present constraints, which
can limit the possibility of such attacks. These constraints
essentially incorporate the use of network limiters.

C. Objective

The correct functioning of AMI stands on consistent and se-
cure execution of tasks in time. The safe security configuration
depends not only on the local device parameters but also on
the secure interactions and flows of these parameters across the
network. There is a significant number of logical constraints on
configuration parameters of millions of AMI devices, which
need to be satisfied to ensure safe and secure communica-
tions among AMI components. These constraints represent
system invariants and user-driven (i.e., organizational) security
requirements. DHS AMI Task Force [1] and NIST (NISTIR
7628) [7] have developed security guidelines consisting of
more than 300 security controls for ensuring trusted path, re-
source availability, boundary security protection, etc., towards
controlling different security threats on AMI. Implementing
these security controls in a scalable manner is one of the major
challenges in smart grid security modeling. In addition, there
is no such formal framework to support the energy providers
for analyzing the constraints based on their own organizational
and business requirements.

Researchers proposed different security analysis tools
for analyzing misconfiguration problems in traditional net-
works [9], [10], [11]. These tools do not model complex
heterogeneous configurations like time-driven data forwarding

Fig. 4. The architecture of SmartAnalyzer.

and different security controls specific to a smart grid. The
objective of this work is to develop an automated tool,
SmartAnalyzer that will allow energy providers to objectively
assess and investigate AMI security configurations for identi-
fying and mitigating potential security threats and to enforce
AMI operational and organizational security requirements. The
major technical novelty of the tool lies in its capability of
analyzing various safety critical constraints on AMI, such
as (i) data overwrite protection, (ii) device scheduling and
cyber bandwidth constraint, (iii) assured data delivery, (iv)
data freshness, etc. Apart from these, the tool is capable of
verifying various basic security properties, such as trusted
path, data integrity, confidentiality, etc. Most importantly, the
tool uses an SMT based formal analysis engine as the core and
provides a proof-based threat report as the outcome, which can
be comprehensively used for fixing the errors.

III. SMARTANALYZER ARCHITECTURE

SmartAnalyzer is an automated security analysis tool for
AMI that has the following functionalities:

• Providing an extensible global model abstraction capable
of representing millions of AMI device configurations.

• Formal modeling and encoding of various invariant and
user-driven constraints into SMT logics.

• Verifying the satisfaction of the constraints with AMI
configuration using an SMT solver.

• Identifying potential security threats from the constraint
violations and providing remediation plans for security
hardening by analyzing the verification results.

SmartAnalyzer architecture is shown in Fig. 4. First, the
tool parses a given AMI configuration template (e.g., Fig. 5
and Fig. 6) and encodes it into SMT logics. The generic con-
figuration template is presented in a CSV (Comma Separated
Value) text file.It consists of the device configurations (based
on abstraction), topology, communication between the devices,
data delivery schedules in the network, etc.

SmartAnalyzer parses (parser module) the configuration
template and extracts a formal AMI configuration model.
It uses a method of abstraction by exploiting the correla-
tion between different configuration parameters in AMI. For
example, a collection of meters with the same properties
(e.g. meter type, vendor, network zone, scheduling info, etc.)
are grouped in a meter class. Then, the tool models the
organizational requirements and various security guidelines
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Fig. 5. An example configuration data of an AMI topology.

(such as NISTIR 7628 standards) respectively as AMI user-
driven and invariant constraints. For the purpose of threat
verification, both the configuration and constraint model are
encoded into SMT Logic. The salient feature of our framework
is that the energy provider can flexibly incorporate more
invariant constraints as per the smart grid security standards
and user-driven constraints as per the organizational need.
The combination of invariant and user-driven constraints is
assumed to be complete to verify the potential security threats
with respect to the smart grid standards and requirements.

The tool reports with empty threat in the case of all the
constraints being satisfied in the verification process. On the
other hand, the verification engine (an SMT solver [12][13])
provides an unsat-core in the case of one or more constraints
being unsatisfied. The traces of this unsat-core are analyzed
to generate a comprehensive threat report. Finally, the tool
(diagnoser module) systematically analyzes the unsat-core
traces in the threat report and creates a cumulative remediation
plan including various possible alternatives. This remediation
plan helps the administrators in reconfiguring AMI by directly
fixing the configuration values or further incorporating new
security alternatives. Most importantly, SmartAnalyzer pro-
vides the unsat-core traces as a proof or evidence of constraint
violations (i.e., availability of potential threats) in the AMI
configuration, which is the highlighted feature of the tool.

IV. MODELING AMI CONFIGURATION

An AMI configuration describes the device level config-
uration parameters, network topology, communication links,
security properties, and the set of traffic control rules. Fig. 5
and Fig. 6 present an example of a partial AMI Configuration.

A. Configuration Level Abstraction

An enterprise smart grid network typically consists of mil-
lions of smart meters and thousands of collectors distributed
over different geographical regions. These devices commu-
nicate for delivering data based on device configurations and
communication properties. For the purpose of achieving better
scalability, we introduce the concept of abstraction based on
the similarities between the configurations of the devices. In
our model, we represent this abstraction by defining classes
for each kind of devices A particular class of device shares

Fig. 6. An example configuration data of an AMI security policy.

the same (physical and logical) configuration properties. We
are not limited with this class based concept within meters
and collectors. In order to have a common design model,
the same concept is applied for all kinds of AMI devices.
However, the cyber-physical devices (e.g., routers, firewalls,
etc.) are not modeled as classes. As we are describing the
AMI devices under the class model, no network identity (i.e.,
IP address) is possible as a class property. Hence, we introduce
the concept of zone as a collection of similar (but not only
limited to same class) AMI devices and provide network
identity (usually subnet based) to the zone. The concept of
zone, increases the scalability of the modeling of end-to-end
network communication oriented constraints.

B. Modeling of AMI Physical Components

In this subsection, we present the formalizations of different
AMI device configurations.

Smart Meter: A meter class is identified by an Id and
its profile SM is represented as a conjunction (∧) of different
parameters as shown in Table I. The vendor type (i.e., Echelon,
GE, etc.) is represented by the parameter Type. We represent
the sampling information of a meter using SInfo, which
consists of two components, sampling size (SSize in KB) and
sampling time (STime). A meter can deliver data to a collector
in two different modes: pull and push. In pull mode, the
meter reports data based on the request from the collector that
follows a specific pull schedule of the collector. On the other
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TABLE I
FORMAL DEFINITION OF AMI METER AND COLLECTOR

Smart Meter:
SMi ⇒ Typei ∧ Patchi ∧ SRatei ∧Modei ∧RSchei∧

Authi ∧ Encri ∧ Servi ∧ CommProtoi ∧ TRatei

Patchi ⇒
∧

j=0... Patchi,j

SRatei ⇒ SSizei ∧ STimei

RSchei ⇒ RScheBasei ∧RScheInti

Authi ⇒
∧

j=0...(AAlgoi,j ∧AKeyi,j)

Encri ⇒
∧

j=0...(EAlgoi,j ∧ EKeyi,j)

Servi ⇒
∧

j=0... SPorti,j

CommProtoi ⇒
∧

j=0... CommProtoi,j

Intelligent Data Collector:
ICi ⇒ Typei ∧ Patchi ∧BufSizei ∧Modei ∧RSchei∧

PRSchei ∧Authi ∧ Encri ∧ ConnSMi ∧ LinkToSMi∧
AttachHSi ∧ Servi ∧ CommProtoi ∧ TRatei

· · · · · · · · ·
PRSchei ⇒

∧
j=0...(PScheBasei,j ∧ PScheInti,j ∧RDevi,j)

ConnSMi ⇒
∧

j=0...(CSMIdi,j ∧ CSMNumi,j)

hand, in push mode, the meter reports data to the collector
(without waiting for request) based on its own report schedule.
This reporting mode is captured by Mode. The reporting time
schedule of a meter (in push mode) is modeled using RSche,
which consists of RScheBase and RScheInt. This indicates
that the meter will report periodically in a regular interval
of RScheInt starting from RScheBase after the base time.
To achieve end-to-end security, the communicating devices
must agree in their authentication and encryption properties.
We model the authentication properties of a meter using the
parameter Auth as conjunction of algorithm (AAlgo) and key
length (AKey). A meter may support multiple authentication
properties. Encryption property is modeled similarly as Encr.
The running services and communication protocols associ-
ated with a meter are represented by Serv and CommProto
respectively. The parameter Patch denotes the patches that
are installed in the meter. The maximum transmission rate
(in Mbps) of a meter is denoted by the parameter TRate.

Intelligent Data Collector: A collector class profile IC is
represented as a conjunction of different parameters, which
covers the same parameters of meter class profiles except the
sampling information. In addition, each collector may have a
pull schedule that is represented by the parameter PRSche. It
has three components: PScheTime, PScheInt, and RDev, which
denote that the collector periodically pulls data from reporting
device (RDev, a meter) starting at PScheBase with interval
PScheInt. A collector has a buffer for storing the report data
from different meters. BufSize represents the buffer size (in
KB). The parameter ConnSM represents the conjunction of
the connected meters (CSMId) to a collector class and their
count (CSMNum). LinkToSM represents the type of the link
(i.e., a link profile ID, refer to Section IV-C) that connects the
collector to the meter. AttachHS represents the headend system
to which data is reported by the collector. Table I shows the
formalization (partial) of a collector class profile ICi.

Headend System: A headend system class profile HS is a
conjunction of the parameters: Type, OS, Mode, TRate, Patch,

TABLE II
MODELING OF ZONE AND DOMAIN

Zone:
Zonei ⇒ ZSni ∧ ZMemi ∧ ZGwi

ZSni ⇒ Ipi,j ∧Maski,j

ZMemi,j ⇒ ZMIdi,j ∧ ZMNumi,j

· · · · · · · · ·
ZMemi ⇒

∧
j=0... ZMemi,j

Representation of a source:

(S ⇔ Id ∧ ZId) ⇒ (Id ⇔ ZMId)

Domain:
Domaini ⇒

∧
j=0... DZIdi,j

PRSche, Auth, Encr, Serv and CommProto. These properties
are modeled as similar to those of a meter/collector.

Host Devices: An AMI network contains different types
of hosts, such as (1) hosts of home area network (enterprise
clients), (2) enterprise internal hosts, (3) enterprise application
servers (backend systems), and (4) external hosts from the In-
ternet. Hosts have considerably less parameters. For example,
a class profile of enterprise client hosts has OS, Auth, Encr,
Serv, CommProto and TRate parameters only.

C. Modeling of AMI Network Topology

An AMI topology defines the physical and logical connec-
tivity between different AMI devices.

Router, Firewall and IPSec: We model router (R), firewall
(F), and IPSec (IS) devices similar to [10]. We only introduce
the traffic limiting capability of a firewall in the model using
the parameter FwLim in its policy (FwPolicy), which denotes
that whether traffic bandwidth should also be controlled along
with access control action (FwAct). If a limit is applied on
traffic, corresponding limit value is represented by FwLimV.
Router selects the next-hop (RNext) for a particular traffic
based on its forwarding policy (RPolicy).

Link: A link is identified by an ID (LId). Its profile is a
conjunction of NodePair (i.e., the node-pair connected by the
link) and LinkStatus (i.e., up or down). LId binds the specified
link type to the predicate LinkProp that represents the proper-
ties of that link including MediaType (i.e., wireless, ethernet,
etc.), SharedStatus (i.e., shared or not), CommMode (i.e., half-
duplex, full-dulex, etc.), LinkBw (in Mbps). There can be also
some especial properties, for example, PrioritySlotRatio for
LonTalk type of links that represents the ratio of priority slots
for congestion-randomization over normal slots.

Zone: We model logical zone as a collection of similar AMI
devices. Each zone has an ID (ZId). The profile of a zone
(Zone) consists of three parameters: ZSn, ZMem and ZGw.
The parameter ZSn denotes an IP-address (with subnet Mask)
that covers all devices in that zone. ZMem represents the IDs
of different device classes and the number of devices under
each class that belong to the zone. ZGw denotes the gateway
router ID for that zone. The formalization of a zone, Zonei
is represented in Table II. Any source or destination node of
the traffic is represented as a conjunction of its Id and ZId.
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The number of traffic sources or destinations depends on the
number of zones and the number of classes in the zones. For
example, if there are 50 zones and 4 collector classes per zone
on average, then there are 200 possible source or destination
collectors. In the rest of the paper, when we will refer a source
or a destination, especially in the case of a traffic, intuitively
it will mean a device class associated with a zone. It is to
remember that meters are directly associated with a collector.

Domain: We define a domain as a group of similar kind
of network devices. For example, all the smart meters in the
AMI network are considered as a domain. Each domain has
an ID (DId). The profile of a domain (Domain) has the list of
zones (DZIds) that fall under the domain (see in Table II).

V. AMI THREAT ANALYSIS MODEL

The potential causes of security threats on AMI lie in
violations of system invariants and security requirements. We
classify them as invariant and user-driven constraints.

A. Invariant Constraints

There are various invariant constraints based on connectiv-
ity, data delivery schedule, resource availability, etc. For the
purpose of successful communication, these constraints need
to be satisfied in AMI. Table III shows the formalizations of
different invariant constraints.

Reachability Constraint: The reachability constraint is the
basis to achieve the transmission of the data between a pair of
devices (if required). For example, at least one collector must
be reachable from a meter for delivering the report data. Simi-
larly, there should be reachability from collectors to a headend,
so that each collector can forward the data to the headend. This
constraint intuitively checks that the communicating devices
should have a common protocol to communicate and the
links between a pair of devices along with satisfaction of
routing/security device policies. The formalization of general
reachability constraint is shown in Table III. We first define
the constraint Forward that checks whether the specific traffic
TrS,D (i.e., from S to D) can be transferred from a node (X)
to another node (Y ) (like state transition). Then, we define
CanReach and the reachability constraint (ReachableConstr)
on top of this. In the constraint formalization, we also model
the maximum possible transmission rate (CanReachTrR) by
taking the minimum bandwidth of the links across the path
along with the limits that may be imposed by a firewall.

Security Pairing Constraint: Consistent security pairing
between two AMI devices is required in addition to reachabil-
ity for successful communication. It states that there should be
a matching of the authentication and confidentiality parameters
between the communicating devices. That is, if the receiver
expects some security requirements, the sender should comply
with the requirement. For example, in Fig. 5, although there
are 4 meters of class m000123 connected with a collector of
class c0003, they are not allowed to communicate with the
collector. This is due to the violation of security pairing (e.g.,
the mismatch of authentication parameters, auth0 and auth1).
Similarly, a host from HAN will not be able to communicate to

TABLE III
FORMALIZATIONS OF INVARIANT CONSTRAINTS)

Reachability Constraint:
ForwardX,Y,TrS,D,TrR ⇒

LinkX,Y ∧
(((X ⇔ S) ∧ (ZGwS ⇔ Y )) ∨ (Y ⇔ D)∨
(RX ∧RPolicyX,TrS,D

∧ (RNextX ⇔ Y ))∧
((FX ⇒ FwPolicyX,TrS,D

∧ FwActX∧
(FwLim ⇒ (TrR ⇔ min(LimV al, LinkBwX,Y ))))∨
(¬FX ⇒ (TrR ⇔ LinkBwX,Y )))

CanReachA,B,TrS,D
⇒

ForwardA,B,TrS,D,TrR∨
(∃C,CanReachC,B,TrS,D,TrR2 ∧ ForwardA,C,TrS,D,TrR1∧
(CanReachTrRA,B,TrS,D

⇔ min(TrR1, T rR2))

ReachableConstrS,D ⇒ CanReachS,D,TrS,D

Pairing Constraint:
AuthPairingS,D ⇒

(AAlgoS ⇔ AAlgoD) ∧ (AKeyS ⇔ AKeyD)

EncrPairingS,D ⇒
(EAlgoS ⇔ EAlgoD) ∧ (EKeyS ⇔ EKeym,D)

Schedule Constraints:
MeterSampConstrM ⇒

SMM ∧ (ModeM ⇒ ((STimeM ≤ RScheIntM )∧
(RScheBaseM ≤ RScheIntM )))∧

((SSizeM/ST imeM ) ≤ TRateM )

CollectorPullScheConstrC ⇒
ICC ∧ (((M ⇔ CSMIdC) ∧ ¬ModeM ) ⇒ PRScheC)

Resource Constraints:
(TotalSDataC ⇔

∑
M SDataM ) ⇒

(M ⇔ CSMIdC) ⇒
(SDataM ⇔ (SSizeM × CSMNumC)))

CollectorBufConstrC ⇒
ICC ∧ (BufSizeC ≥ TotalSDataC)

(TotalSRateC ⇔
∑

M SRateM ) ⇒
(M ⇔ CSMIdC)∧
(SRateM ⇔ ((SSizeM/ST imeM )× CSMNumC)))

CollectorTrRConstrC ⇒
ICC ∧ (TrRC ≥ TotalSRateC)

CollectorBwOutConstrC ⇒
ICC ∧ (TotalSRateC ≤ LinkBwC,ZGwC

)

a meter, if the host does not comply with the communication
protocol (e.g., LonTalk) supported by the meter.

Authenticated Communication Constraint: The con-
straint AuthCommConstr requires end to end authenticated
communication to the AMI core devices (i.e., meters and col-
lectors). That is, the receiver requires the verification that the
sender is authorized. This is similar to authentication security
protocol pairing, except it ensures that authentication is done.
That is, for example, if the receiver has no authentication
requirement, AuthCommConstr will fail, although the security
pairing is still successful. The sender’s authentication is crucial
for verifying that the data is received from a reliable source.
For example, Lontalk, the communication protocol between
meter and collector, provides an authentication mechanism
using 48-bit key. The key has to be matched between the
communication parties.

Report Schedule Constraint: The schedule constraints
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ensure the basic correctness of a report or pull schedule.
The constraint MeterSampConstr states that the sampling
time and the reporting base-start time of a meter must be
less than (or equal to) its reporting interval, such that no
reporting is done without new data. It also verifies that the
sampling rate cannot be more than its maximum transmission
rate. If a meter follows the push reporting mode (Mode is
true), then it should have a reporting schedule. A similar
constraint (CollectorPullScheConstr) states that if a collector
is connected with some meters who follow the pull reporting
mode (Mode is false), then the collector should have a pull
schedule for them.

Resource Constraint: There are different resource con-
straints, which are often relate to report schedules. The con-
straint CollectorBufConsrt states that the buffer size of a
collector should be greater than or equal to the cumulative
sampled data size of all the connected meters to that collector.
Otherwise, data loss will occur in collector buffer under any
report schedule. Similarly, the constraint CollectorTrRateCon-
str states that the cumulative sampling rate of the connected
meters cannot be more than the maximum transmission rate (or
the bandwidth of the link from the collector to its gateway) of
the collector. Otherwise, no schedule will be possible without
data loss.

B. User-driven Constraints

To achieve correct and secure functioning of an AMI net-
work, there may exist different user-driven constraints. Here,
we focus on AMI specific constraints, whose formalizations
are shown in Table IV. Most of these constraints are modeled
as compositions of different invariant constraints.

Assured Data Delivery: We define assured data delivery
as checking of the end-to-end data delivery (from a meter to a
headend through a collector) to satisfy the AMI global func-
tionality. This requirement intuitively implies the satisfaction
of all the invariant constraints (compositionality), which are
the following: (1) reachability, (2) successful security pairing
with ensuring sender authentication, (3) availability of re-
sources (conjunction of all resource constraints including data
overwrite constraint), and (4) synchronous reporting without
flooding the cyber towards the headend (schedule constraints
along with cyber bandwidth constraints across the path). A
violation of any one of these constraints can create failure in
data delivery.

Data Overwrite Protection Constraint: This constraint
states that the aggregate report data of all the meters connected
to a specific collector must not flood the collector buffer within
the reporting interval. For example, in Fig. 5, a collector
of class c0005 receives reports from 5 meters of the class
m00129 (sampling rate: 20 KB per 30 seconds) and 5 meters
of the class m0003 (sampling rate: 18 KB per 40 seconds).
Therefore, the collector will receive 335 KB (in average) of
data every 60 seconds, which is to be stored in its buffer.
According to the report schedule, the collector pushes the data
to the headend every 1440 seconds. Thus, during this period,
total 8040 KB of data will be sent to the collector by these
meters. This amount of data will flood the collector buffer (size

TABLE IV
FORMALIZATIONS OF DIFFERENT USER-DRIVEN CONSTRAINTS

Data Overwrite Protection Constraint:
(TotalRDataC ⇔ TotalSRateC × Period) ⇒

((ModeC ⇒ (Period ⇔ RSIntC))∨
(¬ModeC ⇒ (H ⇔ AttachHSC)∧ (Period ⇔ PRSIntH)))

OverwriteProtectConstrC ⇒
ICC ∧ (BufSizeC ≥ TotalRDataC)

Cyber Bandwidth Constraint:
(NumC ⇔

∑
Z ZMNumZ) ⇒ (MIdZ ⇔ C)

(TotalRRateH,Sche ⇔
∑

C (TotalSRateC ×NumC)) ⇒
(H ⇔ AttachHSC) ∧ModeC ∧ (RScheC ⇔ Sche)

LinkBwConstrH,X,Y ⇒
HSH ∧ (LinkBwX,Y ≥ TotalRRateH)

Secure Tunnel Constraint:
SecureTunnelConstrM,C,H ⇒

ReachableConstrC,H∧
InTrafficPathC,H,X ∧ InTrafficPathC,H,Y ∧
SecTunnelC,H,X,Y ∧ (SecKeyLenC,H,X,Y ≥ KT )

Priority Delivery Constraint:
TotalEmergeBwC ⇔∑

∃iM⇔CSMIdC,i
EmergeMsgProbM × CSMNumC,i

LonTalkPriorityConstrC ⇒
(L ⇔ LinkToSMC) ∧MediaTypeL ⇔′ LonTalk′ ⇒
TotalEmergeBwC ≤ (LinkBwL × PrioritySlotRatioL)

Quality of Delivery Constraint:
FreshnessConstrM,C,H,T ⇒

AssuredDeliveryM,C,H∧
((SumT1,T2 ≤ T ) ⇒ (((T1 ⇔ RSIntM ) ∧ModeM )∨

((T1 ⇔ PRSIntC) ∧ ¬ModeM ))∧
(((T2 ⇔ RSIntC) ∧ModeC)∨
((T2 ⇔ PRSIntH) ∧ ¬ModeC))

Availability Protection Constraint:
(MaxTrRH,X,Y ⇔

∑
C CanReachTrRTrC,H ,X,Y ×NumC) ⇒

CompromiseC ∧ (AttachHSC ⇔ H) ∧ CanReachTrC,H ,X,Y

AvailProtectionConstrH,X,Y ⇒
ICC ∧ (LinkBwX,Y ≥ MaxTrRH,X,Y )

Fault-tolerant Constraint:
LinkFailConstrS,D,L ⇒

(L ⇔ X,Y ) ∧ReachableConstrS,D ∧ FaultyLinkL

DevFailConstrM,C ⇒
∃Ĉ ̸=CReachableConstrM,Ĉ ∧ FaultyDevC

Domain Boundary Protection Constraint:
DomBoundarySecConstrD1,D2 ⇒

∀X∀Y ∃Z(ZIdX ⇔ DZIdD1) ∧ (ZIdY ⇔ DZIdD2)∧
ReachableConstrX,Y ∧ InTrafficPathX,Y,Z ∧ FZ

80000 KB), which will in turn cause data loss, i.e., initial 40
KB of data will be overwritten.

Cyber Bandwidth Constraint: The constraint LinkBwCon-
str conforms that the aggregated report rate of the collectors
reporting simultaneously due to matching report schedules
should not exceed the bandwidth limitation of the network path
(considering a link from X to Y ) connecting to the headend.
Violation of this constraint will cause link congestion (DoS).

Secure Tunnel Constraint: This constraint checks whether
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the data is transmitted from a collector to a headend after
satisfying the security (IPSec) tunnel requirement across a
designated path. In this case, the type of tunneling may be
single, nested, or even both/hybrid. There may exist more
constraints for ensuring the quality of the tunnel. For example,
this requirement can be defined as the satisfaction of minimum
key length (say, 256 bits) and/or the number of nested tunnels
(say, 2-level of nested tunnels).

Priority Delivery Constraint: The data delivery in AMI
may be realized based on prioritization constraint according to
the enterprise policy. For example, the LonTalk protocol allows
for priority message slots (to cope with the 4% cases of data
delivery failures due to its collision avoidance mechanism).
One can define slots in which no other device can use to
randomize for collision avoidance. Those priority slots can
be reserved for those key messages (control messages) that
must have access, no matter how busy the network is. The
constraint LonTalkPriorityConstr states that the priority mes-
sages should have the necessary bandwidth that is required for
them to successfully transmit without any collision, that is, the
bandwidth dedicated for priority messages should be enough
considering the maximum possible priority traffic size. There
can be a constraint to establish that a collector should have
multiple traffic queues in order to support prioritized message
transmission to the headend system, at least one queue for
emergency (i.e., alarm) traffic and one queue for normal traffic.

Quality of Delivery Constraint: There are user-driven
constraints for ensuring the quality of delivery. For example,
the report freshness constraint (FreshnessConstr) restricts the
delivery of data within a specific time window, say, T . A user
can also have constraint on the quality of the trusted path. For
example, this requirement can be defined as the satisfaction of
end-to-end authentication or encryption based on a key length
that the length should be at least 128 bits.

Availability Protection Constraint: This constraint (Avail-
ProtectionConstr) ensures that if there are X number (or
portion) of AMI devices being compromised, assured data
delivery constraint is still preserved. It intuitively verifies that
DoS attack is not possible on links or endpoints, when number
of compromised nodes is no more than X (say, 5% collectors).

Fault-tolerant Constraint: Users may require to check
availability of alternative measures when any AMI component
fails. The constraint LinkFaultTolerantConstr denotes that if a
link is down, the data delivery should not fail. For example,
if the link between a collector (in zc101 in Fig. 6) to its
gateway router (v1) fails, the collector is required to send the
report data received from its connected meters to a neighbor
collector (which might fall under a different zone, e.g., zc102),
which will forward the data to the headend, which ensures
the end-to-end data delivery between the meters and the
headend. The constraint DevFaultTolerantConstr requires that
if an intermediate device fails, the reachability (data delivery)
still holds. For example, if a collector is down, then the meters,
which were designated to send data to this collector, should
be able to communicate with a different collector. A more
strict fault-tolerant constraint can be n-fault tolerance, which
means that if n number of device or link faults happen, still
the data delivery is ensured. For example, if smart meters can

be deployed as a mesh network, this network is capable of
self-healing like routers, if the preferred neighbor meter for
transmitting data to collector/access point fails, the sending
meter can use another meter to transmit the data. Hence, for
an example, a requirement corresponding to each meter can
be defined as how many neighboring meters can fail, although
data transmission is still possible.

Domain Boundary Protection Constraint: In these group
of user-driven constraints, we check whether communication
between different boundaries in the smart grid network are pro-
tected with security devices (i.e., Firewalls, IDS, IPSec, etc.)
and appropriate authentication and data encryption methods.
The constraint DomBoundarySecConstr requires that there
should be at least a security device (typically firewall) between
any communication path between two devices of two different
domains. Similarly, there are also more constraints for domain
boundary protection in order to ensure that, for example, every
communication from the devices of a domain to the devices
of another domain must be done with proper encryption.

C. NISTIR Security Controls as Constraint Violations

The above mentioned constraints provide building blocks
for verifying various important security controls documented
in NISTIR 7628 guidelines [7]. For example, data overwrite
protection, cyber bandwidth, and availability protection con-
straints fall under the NISTIR SG.SC-5 (DoS attack pro-
tection) control. Similarly, domain boundary protection con-
straints represent the NISTIR SG.SC-7 control. Authenticated
communication and security tunnel constraints collectively
ensure NISTIR SG.SC-10 (trusted path) control. In addition,
priority delivery and fault-tolerant constraints implement NI-
STIR SG.SC-6 (resource priority) and SG.CP-11 (fail-safe
response) controls respectively.

D. SMT Encoding and Constraint Verification

We use Boolean terms to encode the Boolean configuration
parameters. We also use Boolean terms to encode some of the
integer configuration parameters, which usually take a very
small range of values. The remaining parameters are modeled
as integer terms. We normalize the parameters into integers
that may take real values (e.g., bandwidth). We use bit-vector
terms for encoding IP addresses. In some of the computations,
we require multiplying/dividing two variables. But, Yices SMT
solver [13] does not support such non-linear operations. Thus,
earlier in [5] we encoded such operations by normalizing one
of the variables to a small set of possible values and applying
the operation on the other variable with one of those values if
it matches with the former variable. Due to this shortcoming
of Yices, we have moved to Z3, another very well-known
SMT solver [12]. This tool supports non-linear operations. We
have applied Z3 .NET API to implement SmartAnalyzer. The
tool (parser module) reads the configuration from the input
template file and directly builds the model using the API.

After defining the configuration parameters as SMT vari-
ables, we model the configurations associated with the AMI
network topology and the AMI components. We encode each
constraint under the same formalism. Then SmartAnalyzer
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creates a verification query that checks the satisfaction of a
constraint with the configuration. If MConf and MConstr are
the AMI configuration and constraint models respectively, the
verification query Q is encoded as the following clause:

Q ⇒ MConf ∧MConstr

VI. VERIFICATION RESULT DIAGNOSIS, HARDENING, AND
IMPACT ANALYSIS

The verification engine of SmartAnalyzer (i.e., Z3 SMT
Solver) generates the verification results, which is either sat
(satisfiable) or unsat (unsatisfiable). In the case of an unsat,
the verification engine provides an unsat-core that basically
represents the traces of constraint violations in the configura-
tion. Then, SmartAnalyzer (diagnoser module) systematically
analyzes these violation traces and generates a comprehensive
threat report for overall AMI configuration verification. This
report includes threat sources, targets, violating rules and
reasonings, and a remediation plan showing possible recon-
figurations for hardening the problems.

A. Methodology of Unsatisfied-core Generation.

If the SMT solver gives an unsat result, we need to get
the unsat-core, which tells about the unsatisfied constraints
and the corresponding configurations that the constraint does
not support. In order to get the unsat-cores in the case of
model failures, we use the concept of hard and soft clauses
(assumptions checking in Z3) for verification. We take the
configurations as a group of assumptions and the constraints as
a different group of assumptions for verifying the satisfaction
of the model. If the model verification fails, the unsat-core
shows the list of assumptions, i.e., the constraints and the
configurations, which are not satisfied. From the list of the
unsatisfied configurations, it is possible to trace the reasoning
of failure of a constraint.

B. Methodology of Remediation Plan Synthesis.

In order to get a remediation plan, we consider a policy for
the reconfigurations. The policy shows feasible or preferred
invariant and user-driven guidelines about possible candidates
for reconfigurations. An invariant guideline represents the
configurations, which are practically infeasible to modify.
The vendor specific device configurations (such as the buffer
size of a collector) are usually constant for a device. Hence,
changing this property requires replacing the device with a
different or newer product that has the required configuration
property. The user-driven guidelines represent the organiza-
tional priorities or capabilities on the reconfigurations for
remediation from threats. For an example, the organization
may be fine with deploying many collectors, but a minimum
number of meters must be connected to each collector.

In the process of exploring the reconfiguration plan, the
diagnoser module continuously checks the satisfaction of the
model by releasing the assumptions (soft clauses) of the
configurations systematically according to the remediation
guidelines until the model verification gives a sat result. Re-
leasing an assumption lets the solver choose the configuration

TABLE V
A SIMPLE EXAMPLE OF RESOURCE CONSTRAINT VERIFICATION

(assert (M 0)) ;; Meter 1 (Id 0)
(assert (= (Id 0) 0))
(assert (= (SSize 0) 25))
(assert (= (SInt 0) 45))

(assert (M 1)) ;; Meter 2 (Id 1)
(assert (= (MId 1) 1))
(assert (= (SSize 1) 15))
(assert (= (SInt 1) 30))

(assert (IC 10)) ;; Collector 1 (Id 10)
(assert (= (Id 10) 10))
(assert (= (BufSize 10) 200))
(assert (=> P0 (= (CSMId 10 0) 1)))
(assert (=> P1 (= (CSMId 10 1) 0)))
(assert (=> P2 (= (CSMNum 10 0) 8)))
(assert (=> P3 (= (CSMNum 10 1) 8)))

(assert (=> PC
(=> (CollectorBufConstr 10)

(and (M (CSMId 10 0)) (M (CSMId 10 1))
(= (SData 10 0) (* (CSMNum 10 0) (SSize (CSMId 10 0))))
(= (SData 10 1) (* (CSMNum 10 1) (SSize (CSMId 10 1))))
(>= (BufSize 10) (+ (SData 10 0) (SData 10 1)))))))

(assert (CollectorBufConstr 1))

(check-sat PC P0 P1 P2 P3) ;; Sat
(get-model)
(get-unsat-core) ;; Unsuccessful

values associated with the assumption that satisfy the hard
clauses along with the remaining assumptions. This process is
an implementation of max-sat [14]. Then, a remediation plan
is generated from the max-sat output. It is worth mentioning
that we use quantifiers for the purpose of verifying some
constraints. In such cases, Z3 may return unknown instead
of sat. This implies that there is no constraint violation found
by the solver. Hence, if the result is not unsat, we consider
that the model is satisfied with the given constraints.

C. Verification Trace Analysis: An Example

This section describes how verification traces (results) from
the SMT solver are analyzed to find the reasons of constraint
violations and remediation plans for them. We explain the
procedure with an example of constraint verifications.

In our example, we evaluate the collector resource (buffer)
constraint (Table III). Table V shows the SMT-LIB encoding of
the AMI configuration (required segment only) and the collec-
tor resource constraint. To comprehend the verification trace,
we consider a tiny AMI configuration with two meters, one
collector, and one headend. Here, the constraint verification
gives a sat result. This signifies that the AMI configuration
satisfies the resource constraint. Thus, there is no unsat-core
in this evaluation. However, we get an unsat result when the
AMI configuration model is modified by setting the buffer size
to a reduced value, 100 KB. The evaluation result is presented
in Table VI. It shows that there is no model that satisfies
the collector resource constraint. It also shows the unsat-
core, i.e., the unsatisfied constraints (assumptions). Then, to
find a sat result, we run the max-sat implementation on the
configuration model sequentially by intuitively weakening the
configuration constraint following the unsat-core. This is done
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TABLE VI
AN EXAMPLE OF DIAGNOSIS PROCESS

Modified Model:
· · · · · · · · ·
(assert (= (BufSize 10) 100))

· · · · · · · · ·
(check-sat PC P0 P1 P2 P3) ;; Unsat
(get-model)
(get-unsat-core)

Solver Output:
unsat
ERROR: model is not available
(P0 P1 P2 P3 PC)

Max-SAT Implementation:
· · · · · · · · ·
(assert (forall ((c Int) (x Int))

(=> (and (>= c 10) (<= c 10) (>= x 0) (<= x 1))
(and (>= (CSMId c x) 0) (<= (CSMId c x) 1)))))

(assert (forall ((c Int) (x Int))
(=> (and (>= c 10) (<= c 10))

(>= (+ (CSMNum c 0) (CSMNum c 1)) 6)
(>= (CSMNum c 0) 0) (>= (CSMNum c 1) 0))))

· · · · · · · · ·
(check-sat P0 P1 P2 PC) ;; Unsat
(get-model) ;; Unsuccessful
(get-unsat-core) ;; (P0 P1 P2 PC)

· · · · · · · · ·
(check-sat P0 P1 PC) ;; Sat
(get-model) ;; Successful
(get-unsat-core) ;; Unsuccessful

Satisfied Model:
· · · · · · · · ·
CSMNum − > {

10 1 − > 6 ;; The number of type 1 meter is 6
else − > 0} ;; The number other type (type 0) meter is 0

· · · · · · · · ·

by removing one predicate (among the predicates of the unsat-
core) from the configuration constraint each time and running
the model verification until the verification result converges
to sat. Obviously, the resultant satisfiable model indicates the
configurations that satisfy the resource constraint. Then, we
use the immediately preceding unsat trace as the potential
trace of the constraint violation. For example, Table VI shows
that the configuration predicates P0 and P1 hold the resource
constraint. In this case, the number of the type 0 meters
and that of the type 1 meters are respectively 6 and 0. The
immediately preceding unsat trace reported is ”PC P0 P1 P2”
which indicates that P2 predicate leads the violation. It can
be observed that P2 predicate in the configuration (as shown
in Table V) asserts the number of each type of meters as 8,
which leads to the unsatisfiability of the resource constraint
when the buffer size is 100 KB.

From the unsat-core, it is found that the remediation to the
collector resource constraint violation is possible by applying
one of the following measures: (i) changing the collector’s
buffer size, (ii) changing the sampling size or rate of the
meter(s), and (iii) changing the number of meters to transmit

Fig. 7. An example of a graphical impact report for a collector resource
constraint violation. Here, AMI consists of 100 meters and 10 collectors,
where 10 meters are connected to each collector.

data to the collector. The buffer size of a collector is basically
vendor-specific and this is not configurable except by replacing
the collector with a different one (having a larger buffer).
This is an example of invariant guidelines that the collector’s
buffer size cannot be considered in the remediation plan. The
sampling rate of a meter is also vendor-specific. However,
it might be possible to replace a meter with a different one
(chosen from the available meters) that has a smaller sampling
size or rate. Hence, in our example, we consider the connected
meters to the collector as assumptions (P0 and P1). It is easy
to change the number of meters connected with the collector.
We take the assumptions P2 and P3 corresponding to the
numbers of meters. However, in the diagnosis process, we
could assume that the organization is using only one vendor-
specific type of meter (e.g., the type 0 meter) and presently
the organization is not willing to try different kinds. This is
an example of user-driven guidelines, when we would not
consider the assumptions P2 and P3.

D. Impact Analysis

We analyze the impact of a potential threat, i.e., a constraint
violation, by considering three factors: (i) loss due to the
threat occurrence, (ii) easiness of the threat execution, and
(iii) remediation cost of the threat. We compute the severity
of a threat from the weighted sum of these factors. The user
specifies the weight for each factor. If the weights are not
specified, all factors are weighted the same.

As the main goal of an AMI network is to enable commu-
nication between meters and the energy provider’s headend
system, we compute the loss due to a threat occurrence as
the ratio of the number of affected meters to the total number
of meters in the AMI network. Hence, the loss value ranges
from 0 to 1. The number of meters affected by a specific
threat is identified in the threat report. In addition, a meter can
be impacted indirectly by a threat occurrence on a collector
(e.g., a collector resource constraint violation). In this case, the
meters associated with this collector will fail to send data to
the headend system. Therefore, in such cases, the total number
of affected meters is computed from the affected collectors and
the association of meters with these collectors (Section IV-B).

The easiness of a threat execution is measured by the access
capabilities required for executing the threat. For example, if
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Fig. 8. Impact of the network size on (a) the invariant constraint verification time, (b) the user-driven constraint verification time, and (c) the remediation
plan finding time in case of constraint violation.

a threat occurs due to an Internet access, the execution of this
threat is easier compared with the internal user’s access. In our
implementation, we consider three different types of access
capabilities: (i) Internet, (ii) home area network, and (iii)
internal enterprise network, in order to classify the easiness
of a specific threat as (i) high (from 1.0 − 0.7), (ii) medium
(from 0.7− 0.4), and (iii) low (from 0.4− 0.1), respectively.
However, users can also create further classifications based on
fine-grain access capabilities.

The cost for the remediation of a threat is computed from
the remediation plan, which provides the reconfigurations that
are required to eliminate this threat. The remediation cost is
computed as the ratio of the total reconfiguration cost to the
maximum affordable cost. The reconfiguration cost for each
individual reconfiguration as well as the maximum affordable
cost are specified by the user. In Fig. 7, we show an example of
the impact analysis considering a threat on a collector, which
occurs due to a resource constraint violation. In this example,
since 10 meters are connected to the collector, all of them will
be affected because of this threat occurrence. The figure shows
the above mentioned three factors and the associated severity.

VII. EVALUATION

In this section, we evaluate SmartAnalyzer in terms of
accuracy, usability, and scalability.

A. Accuracy

Firstly, the accuracy of our tool is ensured by the use of
a formal constraint satisfaction checking method. In addition,
we evaluate our tool with ground truth scenarios by deploying
it in a small AMI testbed created in our university [15].
The testbed setup typically represents a small subset of the
network shown in Fig. 1. We analyze some of the security
constraints, especially, data overwrite protection and cyber
bandwidth constraints. The results of our tool are cross-
validated with the real scenario. For the purpose of analyzing
the constraints, we slide the values of different configuration
parameters, such as (i) taking very low and high pull schedule
intervals for the headend, and (ii) changing the bandwidth
of the links from high to very low. We find some constraint
violations that lead to link flooding and data loss. In addition,
we inject high amounts of data through the simulation (by
adding multiple simulated collectors in the testbed) to observe
its effect on cyber bandwidth constraint. After observing the

constraint violations, we reconfigure the setup according to
the remediation plan and reevaluate the constraint to see the
effect. For example, in the case of a cyber bandwidth constraint
violation, we add traffic limit in firewall rules and observe the
resolving of link flooding. These tests significantly help us in
verifying the accuracy of the tool.

B. Usability

The usability of SmartAnalyzer is evaluated by providing
it to different real-life experienced users and considering
their feedback. The main usability of our tool lies in the
operational efficiency. It allows users (i) to evaluate new
AMI configurations, and (ii) to modify and reevaluate the
configuration within a few seconds (particularly in 5-7 mouse
clicks). The input (configuration template) and output (threat
report) of the tool are simple to understand and are easy to
use. In addition, remediation instructions in the threat report
allow a user to reconfigure the data accordingly.

C. Scalability

We evaluate the scalability of SmartAnalyzer by analyzing
the time and space required in constraint verification by
varying the AMI network size. We consider the network size
as the total number of collectors in AMI (the number of
meters are proportional to the number of collectors). The
number of collectors depends on the number of collector zones
and their sizes. We consider only a single headend zone (10
headends of two headend classes) in the network. We take 100
and 50 meter and collector classes respectively, while each
collector is connected with 10 meters (of 2 random meter
classes) on average. Each collector zone consists of around
1000 collectors (of 5 random classes). We keep the values of
these parameters fixed in most of the experiments, except those
cases where their impacts on the scalability are analyzed.

Impact of network size: Fig. 8(a) and Fig. 8(b) show the
constraint verification time with respect to the network size.
We show the verification time for different invariant constraints
(i.e., reporting mode, collector resource, and reachability)
and user-driven constraints (i.e., assured data delivery and
availability protection constraint). A significant part of the
constraint analysis time is covered by the modeling (SMT
logic encoding) time, which is almost linearly dependent on
the network size that varies with number of zones. Verifica-
tions of some constraints involves all (or a portion of) possible
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Fig. 9. (a) Impact of the zone size on the constraint verification time, (b) impact of the number of collector classes per zone, (c) impact of the network size
on the memory requirement, (d) impact of the number of classes on the memory requirement, (e) - (f) impact of the AMI network size on the analysis time
and the memory requirement for cyber bandwidth constraint verification, which show that the analysis of this constraint fails when the number of collectors
increases more than some certain labels.

source or target nodes (Section IV-C), which increase with
the number of zones. Thus, the verification time of such
kind of constraints (e.g., reachability) increases more with
the size of the network than that of the constraints (e.g.,
collector resource), which are involved with the class size
only. Usually, the user-driven constraint analysis time is more
than the invariant constraint analysis time (see Fig. 8(b)), since
most of the former constraints subsume the later constraints.
We also evaluate the impact of the network size on finding
the remediation plan in case of constraint violations. Fig. 8(c)
shows the evaluation results of finding remediation plans in
two cases: (i) a collector resource constraint violation and (ii)
an assured data delivery constraint violation. In both of the
cases, we observe that the time for finding a remediation plan
is longer than that for the verification only. The reason is as
follows. The remediation plan is required when a violation
is occurred, i.e., the solver gives an unsat result. In an unsat
case, the solver needs to search the whole potential solution
space to conclude that there is no model that satisfies the
constraint. Hence, it takes a longer time compared to a sat case.
To find a remediation plan, we execute the max-sat process,
which requires another one or more verifications of the model
(Section VI-C). Therefore, the execution time for finding a
remediation plan is significantly long.

Impact of zone size and member classes: We evaluate
constraint verification time with respect to different network
zone sizes. This analysis is shown in Fig. 9(a) considering
the reachability constraint. We observe that the analysis time
significantly reduces with the increase in the number of
collectors in the zone. This is due to the fact that the number
of zones decreases as the zone size increases, which in turn
decreases overall model size and the potential targets. Fig. 9(b)

shows the constraint verification time taking a fixed zone size
and varying the number of average classes per zone. We find
that the time increases, if variation of classes increases.

SMT space requirement: The space requirement (memory
used) of the SMT solver [12] is evaluated by changing the
network size (i.e., number of zones) and the number of classes.
Such analysis results are shown in Fig. 9(c) and Fig. 9(d).
We observe that the space requirement increases linearly with
the network size. Similar to the analysis time, the space for
constraint verification is the sum of the space for modeling
the AMI configuration and that for modeling a constraint.
The figures justify this by showing that less space is required
when no constraint is verified. The constraints involving more
quantifiers require larger memory space for encoding. Fig. 9(c)
shows such a comparison between collector resource and
reachability constraints.

Extreme cases when SMT solver fails : If the model size
increases significantly, SmartAnalyzer fails to give a solution.
Increase of the model size depends not only on the AMI
network size (especially, the AMI components) but also on the
constraint type. We present this event in Fig. 9(e) and Fig. 9(f).
In the figures, we show the time and space requirements of
all reachability (ReachableConstr) satisfaction (all collectors
to the headend) as well as the cyber bandwidth constraint
LinkBwConstr satisfaction. The modeling of LinkBwConstr
also requires knowing all the traffics (and traffic size) from
collectors to the headend passing through a link at a particular
time (according the reporting schedules). Due to the modeling
of all possible traffics between the collectors and the headend,
the model size becomes very large. The figures show that if the
number of collectors increases more than 23 thousand (arrow
sign in the figures), the cyber-bandwidth constraint verification
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fails. Similarly, all reachability verification fails if the number
of collectors is higher than 26 thousand. These failures happen
due to the out-of-memory-exception given by the SMT solver.
Fig. 9(f) shows the memory space consumed by the model.

VIII. DISCUSSION

In this section we discuss the issues about the limitation,
extensibility and deployment of SmartAnalyzer.

A. Limitation

SmartAnalyzer can successfully identify possible threats on
AMI by constraint satisfaction checking. It is highly scalable
with the network size. However, there is a couple of limitations
of the tool. First, we have used device and property level
abstraction for achieving scalability under large scale smart
grid configuration, which in turn may not provide fine-grain
attack paths. Second, an SMT solver is used as the core
analysis engine, different normalizations are considered for
real valued calculations. Moreover, the tool does not provide
the functionality for analyzing some of the inherent smart grid
security properties, such as LonTalk protocol configuration.

B. Extensibility

Our proposed model is flexible to model any AMI network
consisting of smart meters, intelligent collectors, and headend
systems. All existing AMI systems follow this general struc-
ture with variability in connectivity structures, technologies
and configuration parameters, which are possible to define in
a flexible way in our model. For example, communication
parameters (i.e., link types, their bandwidths, transmission
protocols, etc.) and device configurations (i.e., meter sampling
rate, collector buffer size, meter to collector assignment, etc.)
are formalized as variables in our model. As a result, our
model can adapt to various existing AMI systems. Moreover,
to incorporate a completely new configuration capability, new
constructs need to be added to the model and used in the query
interface and the analysis engine.

C. Deployment Issues

SmartAnalyzer takes inputs from a template (Fig. 5 and
Fig. 6) and generates a threat report with necessary remedia-
tion plans as outputs. The deployment of SmartAnalyzer can
be fully-automated using SNMP-based configuration manage-
ment tools. These tools can remotely extract the configurations
of the AMI devices. This configuration data can be parsed
to generate the AMI input template. The remediation plan
generated by our tool can be executed using the configuration
management tool by sending, e.g., SNMP SET commands.
This is possible mainly in the cases of the reconfiguration-
based remediation. In other cases, the execution of a remedi-
ation plan may require manual interventions.

IX. RELATED WORK

Throughout the last decade, the security policy misconfigu-
ration and its verification have been studies extensively in [16],
[9], [10], [11]. In these approaches, the formal definition of
configuration anomalies and safe deployment of single or
multiple security devices have been proposed and algorithms
were presented to discover configuration inconsistency. There
is also a number of works on risk-based security configuration
analysis. Risk analysis using attack graphs has been proposed
in [17], [18]. The attack graphs are used in In [17] to predict
the various possible ways of penetrating a network to reach
critical assets. The authors in [18] model the problem of
selecting a set of security hardening measures to minimize
the residual damages in a predefined attack graph within a
budget. Other works [19], [20] have proposed to find optimal
deployment of security devices using attack graphs in order to
block all attack scenarios. However, all these above mentioned
security analysis tools are proposed for analyzing misconfig-
uration problems in traditional networks. These tools do not
model time-driven data forwarding and different operational
and security controls specific to a smart grid.

Last few years a significant number of works [21], [7], [1]
have been initiated on describing the interoperability among
heterogeneous smart grid components including security is-
sues based on different attack scenarios. These works also
describe the operational functionalities of AMI components
and the corresponding energy provider’s internal system with
guidelines for secured communication between them. They
advice that the utilities should not be trusted to be ensured
that proper security is implemented. McDaniel et al. [3],
[22] present the security and privacy challenges in smart grid
networks. The works report that the customers work closely
with the utility to manage energy usage in the smart grid,
requiring that they share more information about how they use
energy and thus exposing them to privacy invasions. Energy
use information stored at the meter and distributed thereafter
acts as an information-rich side channel, exposing customer
behaviors. Wang et al. [23] present an artificial intelligent
based approach for analyzing risks in smart grid networks.
However, in their analysis, they do not consider network link
capacity, bandwidth and different modes of communications
between the smart grid components. Anwar et al. propose a
couple of frameworks [24], [25] for modeling power grid and
its control elements using first order logic. These frameworks
are capable of evaluating power flows, overloading violations
in smart grid. Liu et. al. [26] present a study on false data
injection attacks in power grid. McLaughlin et. al. [4] present
an approach for penetration testing on AMI systems. They
develop archetypal and concrete attack trees for energy fraud,
denial of service and targeted disconnect attacks. However,
these works do not analyze various misconfiguration problems
and security controls on power grid networks.

The survey reveals that no significant research has been
done on formal modeling of the complex AMI configuration
and analyzing various security constraints on the configuration.
Therefore, SmartAnalyzer is a novel and useful tool for prov-
ably analyzing operational consistency and security controls in
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AMI. Moreover, the tool provides possible remediation plans
for the constraint violations, which are useful for reconfigura-
tion planning towards security hardening.

X. CONCLUSION

In this paper, we present an automated AMI configuration
verification, diagnosis and repair technique that is imple-
mented in a tool called SmartAnalyzer. We define various
AMI system invariants and constraints that are important for
protecting AMI from classes of security threats. Using these
constraints and the AMI configuration, we create a logic-based
formal model of AMI and we then use SMT to solve the con-
straint satisfaction problem. Our implemented tool performs
static configuration analysis in order to determine potential
threats due to violations to the AMI security requirements,
such as data overwrite protection, correct device scheduling
with respect to limited resource and cyber bandwidth, authen-
ticated and trusted communication, prioritized data delivery,
fail-safe response, etc. The accuracy and usability of our
presented tool were evaluated using an AMI testbed. We
evaluate the scalability of SmartAnalyzer in different test
configurations. We achieve significantly high scalability by
applying the property level abstractions in the model. We
observe that the running time of the constraint verification
is within 20 seconds for a network of one million collectors.
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