

Mohammad Ashiqur Rahman
†
 and M. Mostofa Akbar

‡

†
Dept of Software and Information Systems, University of North Carolina Charlotte, USA

‡
Dept of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Bangladesh

Emails: mrahman4@uncc.edu, mostofa@cse.buet.ac.bd

Abstract— Due to the growing application of peer-to-peer

computing, the distributed applications are continuously

spreading over an extensive number of nodes. To cope with

this large number of participants, various cluster based

hierarchical solutions have been proposed. Cluster or group

based solutions are scalable for a large number of

participants. All of these solutions exploit the idea of

coordinators, leaders or proxies of the clusters. If any such

node fails, the election of a new one is required. Thus, fault

tolerance of these algorithms is low. Again, as the number of

participating nodes increases every day, it is necessary to

devise highly scalable distributed mutual exclusion

algorithms. This research presents a permission based

parallel solution of distributed mutual exclusion by

modeling a multilevel clustered network, where clusters are

formed at different hierarchies. This technique enhances the

scalability by reducing the cluster size, as it requires

consensus from only one cluster at each level. As the

algorithm has no use of coordinators, it possesses high fault

tolerance. The paper also addresses the problem of

achieving optimal level of clustering in a network for

distributed mutual exclusion.

Index Terms— Distributed algorithm, cluster, consensus,

multilevel, mutual exclusion, parallel

I. INTRODUCTION

In distributed systems, different processes run on

different nodes of a network and they often need to

access shared data and resources, or need to execute some

common events. These processes should be consistent

and the access to these shared entities should be mutually

exclusive. The portion of an event or application, where

any shared component or common events are accessed, is

the Critical Section (CS). Mutual Exclusion (ME)

algorithms ensure the consistent execution of the CS. As

the shared memory is absent in distributed systems the

solutions of the ME problem is not straightforward. Due

to the enormous importance of ME and the difficulty of

its solution, it has been an active research area for the last

three decades. The classic algorithms for Mutual

exclusion that have been proposed for fixed networks can

be classified in two types: centralized and distributed

approaches. In the centralized solutions, a node is

designated as the coordinator to deliver permission to the

other nodes to access their CS, while in the distributed

solutions the permission is obtained from consensus

among all network nodes.

Distributed mutual exclusion algorithms are mainly

classified into two categories: token based and permission

based [1]. In permission based ME algorithms

[7][8][9][10], a requesting node is required to receive

permissions from other nodes (a set of nodes or all other

nodes). In the token based ME algorithms [2][3][4][5][6]

[12], a unique token is shared among the set of nodes. A

node must own the unique token (sometimes cited as

privilege message) before entering the CS. Though token

based algorithms incur low message cost, they suffer

from poor failure resiliency, because complex token

regeneration protocols [11] must be executed if the node

holding the token fails.

In permission-based algorithms, a node needs to have

permissions usually only from a set of nodes, known as a

quorum. Quorum formation algorithms must satisfy that

any two possible quorums have a nonempty intersection.

Quorum based algorithms [10] are resilient to node and

communication failures and network partitioning.

Communication cost of these algorithms is proportional

to the quorum size. Therefore, these algorithms try to

achieve two goals: small quorum size and a high degree

of fault tolerance. Efficient quorum based ME algorithms

take logarithmic cost [9] in best cases, where n is the

number of nodes. However, the cost increases rapidly

with the increase of node failures.

At present, the number of distributed nodes has

become very large. With the emergence of peer-to-peer

computing [26] and grid computing [27], the distributed

applications have been spread over a large number of

nodes. The performance of these distributed applications

depends on the number of participating nodes and the

latency gaps among nodes. But, the classical ME

algorithms do not consider these matters. There are some

two-layer hierarchical algorithms proposed during the last

decade, which consider these issues to some extent. In

these algorithms [13][14] [15], the nodes in the network

are usually divided into several groups where each group

is often called a cluster. Since these algorithms are

mainly token based (used in one or both of upper and

lower layers), they suffer due to token failures. We also

presented a two-layer but fully permission based

algorithm in [34], where the coordinators (named as

message routers) of the clusters form the upper layer.

These above mentioned cluster based algorithms use two

levels of network hierarchy. They run ME algorithm

A Permission based Multilevel Parallel Solution

for Distributed Mutual Exclusion

Manuscript received December 31, 2010; revised September 08,
2011; accepted December 01, 2011.

Corresponding author: Mohammad Ashiqur Rahman, Email:

mrahman4@uncc.edu.

inside the cluster and among the clusters so that mutually

exclusive access prevails.

Chubby [37] and Zookeeper [38] are very well known

distributed locking services, especially in case of web

service data centers. These services are intended mainly

for coarse-grained synchronization – for example, to

elect a master among a set of candidates, which would

then handle all access to a data for a considerable time,

perhaps hours or days. Among the masters a quorum-

based algorithm, typically majority quorum [17], is

executed to have write access for a node, while read

access is controlled by corresponding master alone. They

provide a mechanism similar to hierarchical namespace.

Though the number of participating nodes is reduced to

an extent in the above mentioned approaches, further

reduction is achievable for extra large networks with

higher levels of hierarchy. So, we extended our algorithm

of [34] for multilevel clustered network in [25] where

subclusters are formed inside the clusters. Chubby [37]

and Zookeeper [38] are also extensible to multilevel

hierarchy. However, the main problem of these

algorithms is the failures of coordinators/masters. Any

failed coordinator has to be replaced using a leader

election algorithm, which adds significant overhead.

This paper proposes a multilevel clustered network

architecture and presents a generalized parallel

distributed ME solution based on this multilevel network.

Our proposed solution is fully permission based. It

improves the performance by reducing participating

nodes in each cluster. Running existing ME algorithms in

the clusters is not sufficient to achieve the mutual

exclusion in a network of hierarchical clusters.

Customization of existing classical algorithms is

necessary to execute at different hierarchical levels. The

consensuses inside the clusters must be collected and

combined in a hierarchical order to achieve the global

mutual exclusion. A distributed algorithm is required to

execute this process for coordination among the clusters

of different levels. Our proposed distributed ME solution

incorporates this coordination where ME algorithm is

executed parallelly in clusters of different levels. But for

coordination, no fixed coordinator is used for a particular

cluster. The absence of a fixed coordinator increases the

fault tolerance. The parallel running of the algorithm in

different hierarchical levels improves the performance. In

this research, we also present necessary mechanisms to

maintain the correctness of our mutual exclusion

algorithm in case of node failures. The preliminary part

of the research work is published in [35], which considers

only single level of clustering. This is the extended

version for multilevel clustered network.

The following sections of this paper are organized as

follows. In Section II we describe the multilevel-clustered

network architecture for ME algorithm. In Section III, the

ME solution is illustrated followed by its theoretical

analyses for optimal clustering. Detailed observation

along performance comparison with simulation results

are described in Section IV. Section V presents the

critical evaluation of the proposed algorithm and the last

section concludes the paper by summarizing the major

contributions and future research directions.

II. NETWORK MODEL

In this section, we describe the network model that we

assume in our proposed mutual exclusion solution. First

we describe the system with the necessary assumptions.

Then we propose a logical hierarchical network topology

by introducing ℓ level of clustering. Our proposed ME

solution works upon this hierarchical topology.

A. Description of the System

We consider an asynchronous distributed system,

which follows the model proposed in [29]. Each pair of

nodes is connected through a communication channel.

The message delays for communication and processing

are finite. No assumption is made for the relative

processing speeds of the nodes. A node may fail by

stopping or crashing in accordance with fail-stop model

[19]. However, a failed node may restart afterwards (after

a reasonably long time), which is referred to as recovery.

When a process fails, it loses the values of its states and

variables used in the algorithm except for a few values,

which are necessary for maintaining the correctness of

the algorithm after recovery. So, it uses local stable

storage to keep such crucial information.

B. Proposed Network Architecture

The nodes in a network are logically partitioned into

several nonintersecting groups. Each group is called a

cluster. In multilevel clustering, some smaller clusters can

form a larger cluster again and so forth.

We propose ℓ level of clustering where ℓ can be any

positive integer number. A collection of nodes forms a

Fig. 1. A network with 2 level of clustering.

Level ℓ cluster. In this way, a number of nonintersecting

Level ℓ clusters are formed. Next Level ℓ1 clusters are

formed such that a group of Level ℓ clusters are

associated with a Level ℓ1 cluster. The number of Level

ℓ1 clusters is equal to the number of groups of Level ℓ

clusters, where the groups are nonintersecting. So, the

number of Level ℓ1 clusters is smaller than that of Level

ℓ clusters. In this way, the clusters are formed from Level

ℓ to Level 0. There is only one cluster at Level 0 and it is

associated with all Level 1 clusters. Note that, each node

is a member of a Level ℓ cluster; so each member of an

upper layer cluster is also a member of one or more

clusters of the lower levels. Also note that, no node is

member of more than one cluster at any particular level.

To have a guideline of cluster formation, we follow the

following rules for ℓ level of clustering: All nodes are

divided into a number of nonintersecting Level ℓ clusters.

Then taking an arbitrary node from each of the clusters of

a collection of Level ℓ clusters (be identified as child

clusters) a Level ℓ1 cluster (be identified as parent

cluster) is formed. Thus, the number of nodes of a Level

ℓ1 parent cluster is equal to the number of its Level ℓ

child clusters. Similarly a Level ℓ2 cluster is formed

from a collection of Level ℓ1 clusters. In this way, all

clusters are formed at each Level. According to this

guideline, a member of a Level k (0 ≤ k < ℓ) cluster, it is

also a member of a cluster at each level from Level ℓ to

Level k+1.

There is only one cluster at Level 0 and this is the

topmost cluster. So it can be called as the root cluster.

Level ℓ clusters are the bottommost clusters and can be

called as leaf clusters. If ℓ is 0, then there is only one

cluster with all nodes of the network. In this case, no

clustering is done in the network.

Fig. 1 shows the topology for 2 level of clustering (ℓ =

2). To specify a cluster in the figure, we use Ci,j which

denotes the jth cluster at Level i. All C2,j (1 ≤ j ≤ 9) are

the bottommost level (Level 2) clusters. Taking three

arbitrary member a, b and c of C2,1, C2,2 and C2,3

respectively a Level 1 cluster C1,1 is formed. Similarly

other two Level 1 clusters C1,2 and C1,3 are formed from

another two different collections of Level 2 clusters. C0,1,

the only Level 0 cluster, is formed by taking an arbitrary

member from each of the Level 1 clusters. It is to be

noted that b, a member of C0,1, is also members of C1,1, a

Level 1 cluster, and C2,1, a Level 2 cluster.

Each member of a Level k (0 ≤ k ≤ ℓ) cluster knows the

identifications of the members of its Level k cluster and

the upper level (Level k1, 0 < k ≤ ℓ) parent cluster. As

the memberships to the clusters remain unchanged

throughout the program, a node keeps these data in stable

storage, so that it can retrieve them after recovery if fails.

For cluster formation, any suitable clustering algorithm

[23][24] can be used.

III. PROPOSED SOLUTION

In this section, we propose an algorithm for distributed

mutual exclusion. At first we write the brief outline of the

algorithm. Next we describe the messages and states,

which are required for the algorithm. Then we present our

algorithm in detail, which is followed by the safety and

liveness proofs. We present a detailed analysis of the

proposed solution, in which we find the optimal ℓ level of

clustering. At the end, we propose a maintenance

algorithm in order to keep our solution continuing

correctly in case of a node failure.

A. Brief Outline

Our proposed network model creates a logical

connection among the clusters of different levels. It

represents a tree of clusters with parent-child relationship

among the clusters. We propose a distributed multilevel

ME solution that hierarchically executes the ME

algorithm in clusters at different levels (Fig. 2). To collect

consensus inside the clusters as well as to coordinate

among the hierarchical executions, we extend quorum

based ME algorithm [8][9].

Multiple layers of nodes participate in our proposed

algorithm: the members of Level ℓ to Level 0 clusters. In

all layers, we use the tree-quorum algorithm [9] for

quorum creation. When a node x wants to access the CS,

first it requires the consensus from the nodes inside its

Level ℓ cluster. Then it needs to have permission from the

upper layer (Level ℓ1) cluster. To get this permission, x

selects an arbitrary node y among the members of the

upper layer cluster as its representing node. To y, x is

identified as the represented node. At the upper layer y

executes the ME algorithm similarly to x. In this way

consensus is sought at each layer up to Level 0. If y gets

consensus from its (Level ℓ1) cluster and its upper layer

(Level ℓ2) cluster, it informs x about the consent. At this

point, the node x has the total consensus, i.e., permissions

from all layers, and can use the CS safely. In Section

III.C, the proposed solution will be discussed in detail.

B. Messages and States

The messages required for our proposed ME algorithm

depend on the classic ME algorithm applied to the

clusters. As we apply quorum based ME algorithm [8][9]

inside the clusters, our ME algorithm uses Request,

Reply, Release, Inquire and Yield messages. Since a node

can be members of clusters at several levels, Level

number is added to the contents of these messages to

Fig. 2. Coordination between different levels in l level of clustering

identify the level of the cluster executing ME algorithm.

The communication between a represented node, a

member of a Level k cluster, and its corresponding

representing node, a member of a Level k−1 cluster, is

done through PreCRequest, CRequest, CReply and

CRelease messages. Functions of these messages are

briefly described below:

 When a node x starts to execute ME algorithm in its

Level k (0 < k ≤ ℓ) cluster, it selects an arbitrary

node y among the members of its Level k−1 parent

cluster as its representing node y at Level k−1 and

sends a PreCRequest message to y.

 When x gets the consensus from the quorum of its

Level k cluster, it sends CRequest message to y to

process the request at Level k−1.

 y sends a CReply message to x, if it has the total

permission, i.e., permission inside its Level k−1

cluster as well as the permission from the upper

level (Level k−2) parent cluster (if k−2 ≥ 0).

 x sends a CRelease message to y to propagate the

release message to the upper levels (Level k−1 to

Level 0).

All the messages except Request have the same

structure: Message {source, level}. First element source

is the identification number of the node, which sends the

message to a destination node, while the second element

level is the number indicating the level of the cluster in

which the sender node resides. Request message has

another element called timestamp. It is the global logical

time [16] when the message has been sent. It is used for

ordering the requests to avoid deadlock and starvation. As

multiple requests can come from different fellow nodes to

a single node at a level, a node often needs to keep them

in a queue to process afterward. If a node is a member of

a Level k (0 ≤ k ≤ ℓ) cluster, it maintains a minimum

priority queue, be identified as queue, at this level to keep

the incoming Request messages in order of their

timestamps. If timestamps of two Request messages are

equal, then node identification numbers are used for

determination of order. This ordering is crucial for

avoiding deadlock and starvation. A member node of

Level k (0 ≤ k < ℓ) cluster also maintains a first-in first-

out queue, be identified as fifo, for CRequest messages.

Each node might have different roles in different

levels. As a result, each node might have different states

for different levels. To represent the proposed system we

define following array of states. Each element of the

array represents the state of the node at a particular level.

Throughout the paper we use the word „set‟ for a state to

denote that the state is true. On the other hand, the word

„reset‟ is used to denote false.

 REQUESTING [0…ℓ]: This state at a level is set

when a node sends Request messages to the fellow

nodes of its cluster at Level k.

 LOCKED [0…ℓ]: This state at Level k is set when a

node sends Reply to a REQUESTING fellow node,

from which it has received a Request.

 BUSY [0…ℓ]: When a requesting node at Level k

receives consensus inside its Level k (0 ≤ k ≤ ℓ)

cluster and from its Level k−1 (if k > 0) parent

cluster, it enters into BUSY state at this level. If k <

ℓ, it is obvious that it has already received CRequest

from a node of its Level k+1 child clusters.

 BUSYWAITING [0…ℓ]: When a node at Level k gets

a PreCRequest from a node of its Level k+1 child

clusters, it starts processing of collecting consensus

inside its Level k cluster as well as from its Level

k−1 (if k>0) parent cluster. If, afterward, it receives

consensus from both of its cluster and the parent

cluster, before receiving CRequest from any node of

the child clusters, this state at Level k is set.

 CREQUESTING [0…ℓ]: When a requesting node at

Level k (if k>0) gets necessary consensus in its

cluster of this level, it sends CRequest to its

representing node at Level k−1 for the consensus of

that level, and so sets its CREQUESTING state at

this level.

 INQUIRING [0…ℓ]: If a node x at Level k gets a

request from a fellow node y that has a timestamp

earlier than that of a previously received request

from a node z, which has been replied already, then

x sends an Inquire message to z, as well as, sets the

INQUIRING state at this level.

C. Algorithm

Following variables are used in our ME algorithm:

 queue [0…ℓ]: Each entry is a min-priority queue to

keep the Request messages at Level k (0 ≤ k ≤ ℓ−1).

Priority is measured using timestamps of the

messages.

 fifo [0…(ℓ−1)]: A first-in first-out queue for each

level to keep the CRequest messages at Level k (0 ≤

k ≤ ℓ−1).

 replies [0…ℓ]: Storage to keep the received Reply

messages at Level k (0 ≤ k ≤ ℓ).

 representing-node [1…ℓ]: if representing-

node[k]>0, it represents the representing node at

Level k−1.

 represented-node [0…(ℓ−1)]: if represented-

node[k]>0, it represents the represented node at

Level k+1.

 num-of-PreCRequest-pending [0…(ℓ−1)]: It is the

number of pending PreCRequest messages at Level

k (0 ≤ k ≤ ℓ−1).

 locking-node [0…ℓ]: It represents the locking node

at Level k (0 ≤ k ≤ ℓ).

We use „Send Message to destination‟ command in

order to send a message (Message) to a node

(destination). The proposed algorithm consists of

different key procedures, pseudocodes of which are

shown below. Each node in the system executes the

algorithm according to its role. Except for the first four

procedures, each function is invoked by a node when an

associated message is received.

Procedure Do-Request (k)

1 REQUESTING[k] TRUE

2 if k > 0

3 representing-node[k]Select a representing node at k–1
4 Send PreCRequest{id, k} to representing-node[k]

5 Select a quorum within its cluster

6 Send Request{id, k, current time} to all members of the

quorum
7. Initialize replies[k]

Procedure Do-CS-Request

1 Do-Request(ℓ)

Procedure Process-Use-CS

1 BUSY[ℓ] TRUE

2 /* Use of the CS */

3 BUSY[ℓ] FALSE

4 if ℓ > 0

5 Send CRelease{id, ℓ} to representing-node[ℓ]

6 representing-node[ℓ] 0

7 Send Release{id, ℓ} message to all members of quorum

Procedure Time-Out-BUSYWAITING (k)

1 BUSYWAITING[k] FALSE

2 num-of-PreCRequest-pending[k] 0

3 if k > 0

4 Send CRelease{id, k} to representing-node[k]
5 Send Release{id, ℓ} message to all members of quorum

Procedure Process-Request (request)

1 k request.level

2 if LOCKED[k] = FALSE and INQUIRING[k] = FALSE

3 LOCKED[k] TRUE

4 locking-node[k] request.source

5 Send Reply{id, k} to locking-node[k]
6 else

7 Insert request into queue[k]

8 if LOCKED[k] = TRUE and request has higher priority
than the request of locking-node[k]

9 LOCKED[k] FALSE

10 INQUIRING[k] TRUE
11 Send Inquire{id, k} to locking-node[k]

Procedure Process-Reply (reply)

1 k reply.level

2 Insert reply into replies[k]
3 if replies[k] possesses Reply messages from all members of

a requesting quorum

4 REQUESTING[k] FALSE
5 if k = 0

6 if k = ℓ

7 Process-Use-CS()
8 else

9 if represented-node[k] ≠ 0

10 BUSY[k] TRUE
11 Send CReply{id, k} to represented-node[k]

12 else

13 BUSYWAITING[k] TRUE
14 Timer for Time-Out-BUSYWAITING(k)

starts

15 else

16 CREQUESTING[k] TRUE

17 Send CRequest{id, k} to representing-node[k]

Procedure Process-Release (release)

1 k release.level

2 LOCKED[k] FALSE

3 INQUIRING[k] FALSE

4 if queue[k] is not empty

5 request Extract from queue[k]

6 LOCKED[k] TRUE

7 locking-node[k] request.source
8 Send Reply{id, k} to locking-node[k]

Procedure Process-CRequest (cRequest)

1 k cRequest.level – 1

2 if represented-node[k] ≠ 0

3 Insert cRequest into fifo[k]
4 else

5 represented-node[k] cRequest.source

6 if BUSYWAITING[k] TRUE

7 BUSY[k] TRUE

8 BUSYWAITING[k] FALSE

9 Send CReply{id, k} to represented-node[k]
10 else if REQUESTING[k] = FALSE and

CREQUESTING[k] = FALSE

11 Do-Request (k)

Procedure Process-PreCRequest (preCRequest)

1 k preCRequest.level – 1

2 num-of-PreCRequest-pending[k] num-of-PreCRequest-

pending[k] + 1
3 if represented-node[k] = 0 and REQUESTING[k] = FALSE

and CREQUESTING[k] = FALSE

4 num-of-PreCRequest-pending[k] num-of-
PreCRequest-pending[k] – 1

5 Do-Request (k)

Procedure Process-CReply (cReply)

1 k cReply.level + 1

2 CREQUESTING[k] FALSE

3 if k = ℓ

4 Process-Use-CS ()
5 else

6 if represented-node[k] ≠ 0

7 BUSY[k] TRUE
8 Send CReply{id, k} to represented-node[k]

9 else

10 BUSYWAITING[k] TRUE
11 Timer for Time-Out-BUSYWAITING(k) starts

Procedure Process-CRelease (cRelease)

1 k cRelease.level – 1

2 BUSY[k] FALSE

3 represented-node[k] 0

4 if fifo[k] is not empty

5 cRequest Extract from fifo[k]

6 represented-node[k] cRequest.source

7 BUSY[k] TRUE

8 Send CReply{id, k} to represented-node[k]
9 if num-of-PreCRequest-pending[k]>0

10 num-of-PreCRequest-pending[k] num-of-

PreCRequest-pending[k] – 1
11 else

12 if k > 0

13 Send CRelease{id, k} to representing-node[k]

 14 representing-node[k] 0

15 Send Release{id, k} message to all members of quorum

16 if num-of-PreCRequest-pending[k]>0

17 num-of-PreCRequest-pending[k] num-of-

PreCRequest-pending[k] – 1
 18 Do-Request (k)

The points below describe our algorithm. We also

utilize Fig. 1 along to explain the algorithm.

Basic Multilevel ME Algorithm:

 Requests for the CS are generated at Level ℓ cluster

(Do-CS-Request). These requests are processed in

different levels- Level ℓ to Level 0- sequentially.

For example, the clusters C2,4, C1,2 and C0,1 in Fig.

1 represent the participating clusters if a member of

C2,4 places a request for the CS.

 A CS requesting node x first starts ME algorithm

(Do-Request) in its Level ℓ cluster. It selects a

quorum ql and sends a Request message to each of

the quorum members. Now, its REQUESTING[l]

state is set (State transition 1). If its request is

granted within the cluster, it selects an arbitrary

node y among the members of its Level ℓ1 parent

cluster, as its representing-node at Level ℓ1, and

sends CRequest to it (Process-Reply at lines 3-11).

At this point, x‟s REQUESTING[l] state is reset

and CREQUESTING[l] state is set. To y, x is

identified as the represented-node at Level ℓ. When

y gets CRequest from x, it executes ME algorithm

in its Level ℓ−1 cluster (Process-CRequest at lines

10-11). If y gets consensus here, then it sends

CRequest to its Level ℓ−2 parent cluster. This

process continues until Level 0 is reached.

 When a node of a Level k (0 ≤ k ≤ ℓ) cluster makes

a request, it needs the permission or consensus

from two sides in two sequential steps: firstly from

the nodes of its cluster and secondly from the upper

level (Level k−1) parent cluster through the

representing node. If there is no upper level (k = 0),

then only the consensus from its cluster is required.

After getting the total consensus, a node of a Level

k cluster sends CReply downward to its represented

node, a member of a Level k+1 cluster (Process-

Reply at line 5, and Process-CReply at lines 6-8).

At this point, it resets its CREQUESTING[k] state

(if k>0) and sets its BUSY[k] state. In this way,

when the requesting node at the bottommost level

(k = ℓ), the originator of the request, gets the total

consensus (Process-Reply at lines 3-7, and

Process-CReply at lines 3-4), it executes the CS

exclusively (Process-Use-CS).

 After execution of the CS, the requesting node

resets BUSY[l] state and sends Release messages to

the nodes inside its cluster, a Level ℓ cluster

(Process-Use-CS at line 7). If ℓ>0, it also sends

CRelease message to its representing node at Level

ℓ−1 (Process-Use-CS at lines 4-6). When the

representing node at Level k (0 ≤ k < ℓ) cluster gets

CRelease from its represented node at Level k+1, it

resets its BUSY[k] state and sends Release

messages to the member nodes of its Level k

cluster (Process-CRelease at line 15). If k>0, it also

sends CRelease message to its representing node at

Level k−1 (Process-CRelease at lines 12-14). In

this way, consensus is released up to Level 0.

 A node at Level k, if it is not in LOCKED[k] or

INQUIRING[k] state, sends a Reply message, as its

permission, to the requesting node and sets its

LOCKED[k] state (Process-Request at lines 1-5).

Otherwise it inserts the Request message into

queue[k]. When it receives the release message, a

node resets its LOCKED[k] state and chooses the

request residing at top of its queue[k], if it is not

empty, for next processing (Process-Release).

 It is possible for a node of a Level k (0 ≤ k < ℓ)

cluster to be selected as representing node by

multiple nodes of different Level k+1 child

clusters. For example, h, a node of C0,1, is selected

as representing node at Level 0 simultaneously by e

and g, two nodes of two different Level 1 child

clusters C1,1 and C1,2 respectively. So, h will

receive CRequest messages from both of e and g. If

h receives these messages at the same time, then it

serves the CRequest message that comes first. So, it

keeps pending CRequest messages into fifo

(Process-CRequest at lines 2-3). When a node get

consensus for the currently serving CRequest, it

also serves all other CRequest messages with this

consensus one after one until its queue becomes

empty (Process-CRelease at lines 4-10). Let, h has

received CRequest of e before that of g. So, h is

serving the request of e, which is now the

represented node of h, while the request of g is

waiting in the queue. When h receives consensus

from C0,1, it sends CReply to e. After a while, when

h gets CRelease from e, it does not release the

consensus; rather it sends CReply to g, which is

now the represented node of h. This process

continues until h gets CRelease from its

represented node and finds out that its CRequest

queue is empty. Then it releases the consensus in

its cluster and sends CRelease upward to its

representing node if any upper level exists

(Process-CRelease at lines 12-15).

According to the above description of the algorithm,

the progression of the algorithm is sequential since

consensus must be ensured in a Level k+1 cluster before

processing starts in a Level k cluster. Now we discuss

how this sequential behavior is significantly reduced by

incorporating parallelism.

Parallel Execution of ME Algorithm:

 When a node x begins to execute ME algorithm in

its associated Level k (0 < k ≤ ℓ) cluster, it also

sends PreCRequest to its arbitrarily selected

representing node y at Level k−1 (Do-Request at

lines 2-4). After getting PreCRequest from x, y

starts to execute ME algorithm in its Level k−1

cluster without setting its represented node

(Process-PreCRequest at lines 3-5). If x gets

consensus within its Level k cluster, it places

CRequest to y. When y gets the CRequest, it sets its

represented node to x. Within the time y may have

already received consensus in its Level k−1 cluster.

Otherwise, y has reached a point towards getting

consensus.

o If y gets consensus before receiving CRequest

from a node of its Level k child clusters, it sets

its BUSYWAITING state and waits for a

threshold period for the request (Process-Reply

at lines 12-14, and Process-CReply at lines 9-

11). Within this threshold time, if any

CRequest come, y accepts the requesting node

as its represented node and gets into BUSY

state. It time expires, y will release this

consensus so that other competing nodes need

not to wait any longer and BUSYWAITING is

reset (Time-Out-BUSYWAITING).

 It is common and usual to have other nodes besides

x in the corresponding Level k child clusters to be

competing in order to get consensus. Obviously,

each of those nodes will send PreCRequest to their

representing nodes. It is quite possible for y to be

selected as the representing node at Level k−1 by

more than one nodes of Level k. Since y can

process only one in-advance request, at a time, if y

is already processing of such a request, whether it

is CRequest or PreCRequest, it will not process any

additional PreCRequest until the current processing

finishes. It only counts the pending in-advance

requests for later processing (Process-PreCRequest

at line 2).

o Let x and z (in the same or different

Level k clusters) both are requesting for

consensus, which are child clusters of a Level

k−1 cluster. Both of the nodes have selected y,

a member of that Level k−1 cluster, as their

representing nodes. y is running ME algorithm

in the cluster in response to x‟s PreCRequest,

since the request of x has reached y earlier than

that of z. However, z gets consensus (in its

cluster) before x. So, z sends CRequest to y.

Now y sets z as its represented node at Level k

and ongoing ME algorithm continues

(Process-CRequest).

o After receiving CRelease from z, y

begins advance processing again, since its

counter shows that there is still one

PreCRequest to serve (Process-CRelease at

lines 16-18). At this time, x may get consensus

in its Level k cluster and then it will send

CRequest to y.

Inquire and Yield messages works to avoid deadlock,

similarly as in [7][8][35]. The pseudocodes of the

processes, which are invoked when a node receives these

messages, are not mentioned here due to space limitation.

Deadlock avoidance procedure is described below.

Deadlock Avoidance Algorithm:

 Let a node u, at some Level k, receives a request

from a node v that possesses a timestamp earlier

than the request of a node w currently being

processed; to which it has already sent a Reply

message. Then u puts the request of v into queue[k]

and sends an Inquire message to w and waits for

either a Yield or Release message from w (Process-

Request at lines 8-11). At this time, its LOCKED[k]

state is reset and INQUIRING[k] state is set.

 When w receives the Inquire message from u, it

relinquishes the consensus of u as well as sends a

Yield message to u if and only if it has not received

all replies from its requested quorum members. If

w has already acquired all necessary replies to

access the CS and may be already executing the

CS, then it simply ignores the Inquire message and

proceeds normally, that is, it continues to execute

the CS. After finishing the execution, it sends a

Release message to the inquiring node u.

 When u receives the Yield message, it resets it

INQUIRING[k] state and puts back the request of w

into its queue[k]. Now it pop out the request from

the top of queue[k] and accordingly sends a Reply

message to the corresponding node and gets into

LOCKED[k] state again. In the mean time if no

Request with earlier timestamp has come, the

Request of v is the selected request message. If u

receives Release message instead of Yield message

from w, it does the same except for reinserting the

request of w into queue[k] (Process-Release at line

3), since the request has been served already.

Necessary proofs for the new ME solution are given in

following Subsection. The solution is also theoretically

analyzed in Subsection II.F for computing optimal level

of clustering. Since failures of nodes disrupt any ongoing

process of our ME algorithm, an algorithm is presented in

Subsection II.G for maintaining the proper execution of

the ME algorithm.

D. Proof

Correctness of our ME algorithm is guaranteed by

proving two properties: safety and liveness.

1) Safety

A mutual exclusion solution is said to be safe if no

more than one node gets access to the CS at a time. For

quorum based algorithms, this condition holds, if there is

at least one common node between any two quorums for

accessing the CS [18]. For ℓ level of clustering, we must

get consensus at each level. A quorum of our solution can

be defined as

lk

kkl qqqqq

1

0
,

Here
k

q is a quorum formed from the nodes of a Level k

cluster.

Similarly, another quorum could be

lk

kkl ppppp

1

0
, where

kp is a quorum

formed from the nodes of a Level k cluster. Now,

)()()(0011 qpqpqpqp ll

Here, 00 qp , as these are the quorums of the only

cluster in Level 0 and inside the cluster classical quorum

formation algorithms are used, which ensure the

intersection between any two quorums [9]. So, qp .

Thus, the solution must maintain mutual exclusion in

entering the CS.

2) Liveness

To prove the liveness, we need to show that any

request is served after a finite period of time. Let the C

nodes of a Level k cluster be N1, N2, … …, NC. Consider

the worst-case scenario, where the requests are queued at

Ni from each of the fellow nodes. The timestamps of the

queued requests at Ni are T1, T2, … …, TC. The request

sent by Nm contains the maximum timestamp. Thus,

Tcurrent > Tm > Ti; where Tcurrent is the current time and

mi . Let, the timestamp of the next request coming

from any node Nj (after completion of its earlier request

with timestamp Tj) is denoted by next

j
T . Definitely, next

j
T ≥

Tcurrent. Hence, next

j
T > Tm. Therefore, the request from Nm

must be served within a finite duration (after C–1

outstanding requests are served) as it has the timestamp

earlier than that of the next group of requests.

For ℓ level of clustering, we must have consensus at all

levels. After getting consensus from a Level k (ℓ ≤ k < 0)

cluster, we send request (CRequest) to the representing

node at Level k–1 as we need further consensus from

Level k–1 to Level 0. At this moment, the representing

node‟s execution of ME algorithm at its Level k–1 cluster

may be already in a position close to getting consensus

due to PreCRequest message. After receiving CRequest,

the representing node continues the ME execution, if the

process is ongoing, otherwise it starts the processing. As,

CRequest message will reach all levels up to Level 0, ME

algorithm is executed in a cluster at each level. Since any

request must be served within a finite period in a cluster,

ultimately we must get consensus at all levels (ℓ ≤ k ≤ 0)

after a finite time. So, liveness is proved. Note that, in the

worst case a request needs to wait for the completion of

(ℓ+1) × (C−1) other requests.

E. Analysis

The analysis of the proposed solution is presented in

this section considering tree-quorum algorithm [9]

running in the clusters of each level. According to tree-

quorum algorithm the expected quorum size for a

network with size n is expressed as

)2)(1()1(
11

hhh

cfcfc , where f is the availability

of a node in a quorum (probability of a node being

available or alive) and nh
2

log (height of the binary

tree formed by n nodes). Note that, according to [9], f

denotes the fraction of the quorums that include the root

of the tree of level ℓ+1. It is actually the probability that

the root is included in the quorum when all the quorums

are equally probable. In this research, we assume that the

root is included in the quorum if it is available. Thus, f is

equivalent to the probability that the root is available. In

the recursive equation of expected quorum size, each

node becomes a root in a particular level of the cluster.

That is why f is denoted as the probability that a node is

available at a particular instant. The message cost is the

average number of messages needed for (a single request

from) a node to enter the CS and this is proportional to

the quorum size, hc . Hence, this hc represents the cost

function. Solving this recurrence, following equation is

found:

1when ,
1

)2(

1when ,1

f
f

ff

fh
h

h

c
 (1)

As the time requirement in a distributed algorithm is

almost proportional to the number of messages, the

following analysis will also be applicable for average

time requirement.

1) Optimal Cluster Size

Let level of clustering be 1. So, there are two levels of

clusters: a number of Level 1 clusters and a Level 0

cluster. We consider two parameters: n, the number of

nodes in the network, and C, cluster size of each Level 1

cluster assuming all clusters are of the same size.

Therefore, the number of Level 1 clusters is n/C. This is

the cluster size of Level 0 cluster since taking one

arbitrary node from each of the Level 1 clusters forms the

Level 0 cluster.

The height of the tree formed by the nodes of a Level 1

cluster is Ch
21

log . Similarly, the height of the tree

formed in Level 0 cluster is

10

220

20

loglog

)/(log

hhh

Cnh

Cnh

Therefore, total cost of the proposed solution:

c = c0 + c1 + Coordination cost between Level 0 and Level 1

Here, c0 and c1 are the costs of executing tree-quorum

algorithm at Level 0 and Level 1 respectively.

Coordination cost is proportional to the number of

representing nodes doing coordination. Here, only one

representing node does the coordination between Level 0

and Level 1.

Hence, 1
1

)2(

1

)2(11

f

ff

f

ff
c

hhh

Taking the derivative of c with respect to h1 and

equating it to zero, we get the following condition of

optimal clustering:

nC

nC

hh

22

1

loglog2

2

That is, the optimal cluster size for a network with

single level of clustering is the square root of the network

size. The number of Level 1 clusters (i.e., the Level 0

cluster size) is n/C = n/√n = √n. Therefore, the cluster

sizes of all of the clusters of both the levels are the same.

This is proved for 1 level of clustering where tree-quorum

algorithm is used within the clusters. We can easily

derive the following results by extending the result of 1

Level of clustering:

“For optimality, the cluster sizes of different levels of

clusters are equal for ℓ level (ℓ≥1) of clustering when

tree-quorum algorithm is used inside the clusters”.

 It is worth mentioning that, we have not considered the

heterogeneity of the network, i.e., the heterogeneity of the

communication and the heterogeneity of the clusters.

Rather, for convenience of analysis we determine

optimality based on the message costs.

2) Optimal Level of Clustering

In order to obtain the optimal message cost for ℓ level

of clustering of n nodes we find n = C
l+1

. This can be

explained as: at first n nodes are partitioned into several

clusters where each of them has size C. So, total number

of clusters is n/C. Now new clusters of another level are

generated by taking C number of clusters of the previous

level. Thus, this level contains n/C
2
 clusters. This

clustering process will continue up to ℓ+1 times. At last,

topmost level will contain only a single cluster. Now we

will determine the optimal value of ℓ if the tree-quorum

algorithm is applied in each level. Remember that, inside

any cluster of any level, only C number of nodes

participate in the ME algorithm.

Now, let h is the height of the tree formed by the whole

network of n nodes. Then h1, the height of the tree formed

in each cluster by C participating nodes, is
)1(

1

l

h
h .

Thus, the total cost c can be expressed as follows:

l
f

flfl
c

f

ff
c

l

h

l l

h

1

)1()2)(1(

Coston Coordinati LeveltoLevel
1

)2(

1

1

1

1

Taking dc/dl = 0, the optimal value for ℓ can be

expressed as:

1
1

)2(log

k

f
e

h
l (2)

Here k is a dummy parameter taken to solve the

equation. An equation-solving tool named „DeadLine‟

[28] is used to find the value of k from an intermediate

equation. A rough estimate of the value of k can be

represented by))1(27846.0(ff for f ≠1. The

optimal value of ℓ is 0 for f =1, i.e., theoretically no

clustering is needed where all the nodes are available in

the system.

Fig. 3 and Fig. 4 show theoretical message cost for

different levels of clustering. Optimal level of clustering

for a particular n and f is determined by Equation (2).

Optimal level of clustering is shown in both of the figures

at the rightmost of the message cost bars. Note that, the

message costs shown in these graphs are actually

(accumulation of) expected quorum sizes at different

levels. Following are the observations considering the

message cost from the presented figures:

 Clustering is very much effective for large n and

low f. If f=1, no clustering is required irrespective of

the network size.

 Clustering reduces the message cost up to a certain

level of clustering, which is defined as the optimal

level of clustering. Further clustering increases the

message cost.

 For a particular f if n increases, higher level of

clustering performs better than lower level of

clustering. Similarly for a particular n if f decreases,

higher level of clustering performs better than lower

level of clustering.

These graphs are plotted using the equations derived

from the theoretical analysis. In Section IV, we will

verify this theoretical result with the simulation result.

3) Minimum Delay for a Request to Satisfy

Let q is the average quorum size of a cluster of any

level, T is the average transmission time and P is the

average processing time. We make two assumptions: (i)

at least one quorum is available in a cluster; (ii) there is

only a single request for CS in the system to process and

no other request will be issued until its processing

completes.

The processing time for q number of Request messages

is qP, that is, the q‟th message is sent after qP delay.

Thus, the time for the last message to reach the

destination node is qP + T. In the mean time, earlier

messages must have reached their destinations. Now, in

Level ℓ−1 cluster the request is reached through a

PreCRequest. Time for the PreCRequest to reach the

representing node at the next upper level is P + T. As a

result, all nodes of a quorum at Level ℓ−1 will receive a

Request message within (P + T) + qP + T. In this way, the

time needed for PreCRequest to reach the representing

node of Level 0 is ℓ (P + T) and consequently the last

Request message in this level reaches its destination at

ℓ (P + T) + qP + T.

When a node receives a Request, it sends Reply

immediately if it is free (i.e., it is not LOCKED and no

other requests is in its queue). Since we have assumed

that, only a single CS request exists in the system, after

receiving a Request, a Reply will be sent just incurring the

processing time. Thus at Level ℓ, total time until the last

Reply reached to the requesting node is qP + T + (P + T).

Similarly at Level 0, the requesting node receives the last

Reply on ℓ(P + T) + qP + T + (P + T), i.e., (ℓ + 1)(P + T)

+ qP + T.

Fig. 3. Comparison among different levels of clustering hierarchy

for the networks with different sizes and fixed f = 0.8.

2.
07

1.
99

1.
89

1.
77

1.
59

1.
29

0

5

10

15

20

25

30

200 400 600 800 1000 1200

Number of Nodes (n)

M
e
ss

g
e
 C

o
st

No clustering

1 Level of Clustering

2 Level of Clustering
3 Level of Clustering

Optimal Level of Clustering

Fig. 4. Comparison among different levels of clustering for

different f in a network with 1200 nodes.

01.4
6

2.2
9

2.8
1

3.1
7

3.4
5

0

10

20

30

40

0.75 0.8 0.85 0.9 0.95 1

Availability of a Node (f)

M
e
ss

a
g

e
 C

o
st

No Clustering 1 Level of Clustering

2 Level of Clustering 3 Level of Clustering

Optimal Level of Clustering

After getting the consensus, CReply is sent to

downward. It takes (P + T) time to reach from Level k to

Level k+1. In this way, CReply will be reached from

Level 0 to the CS requesting node in ℓ(P + T) time. So,

the total time for the CS requesting node needs from

requesting (i.e., start processing the first Request to be

sent) to getting consensus (i.e., receiving CReply) is (ℓ +

1) (P + T) + qP + T + ℓ(P + T), that is, (2l + 1) (P + T) +

qP + T.

We know that q is a function of the number of

participating nodes, which is the cluster size C, and it

varies from log2C to C/2 depending on the f, the

availability of a node. It is worth mentioning that, the

delay for request satisfaction in case of no clustering is

qP + T + (P + T), where q varies from log2n to n/2.

Here, n is the number of nodes in the system.

4) Availability of a Quorum

The probability that a node is available at any time is f.

According to the tree quorum algorithm [9], the

availability of a quorum in a cluster is computed by

formulating a recurrence relation. The recurrence relation

is in terms of the availabilities of forming quorums in the

subtrees of a binary tree. Let Ai be the availability of

forming a quorum in a tree of height i. Thus, Ai+1, the

availability of forming a quorum in a tree of height i + 1

is given as

Ai+1 = Probability (root is up) × Availability (Left

subtree) × Availability (Right subtree)

+ Probability (root is up) × Unavailability (Left

subtree) × Availability (Right subtree)

+ Probability (root is up) × Availability (Left

subtree) × Unavailability (Right subtree)

+ Probability (root is down) × Availability

(Left subtree) × Availability (Right subtree).

Using f as the probability of the root being up, Ai as the

availability of a subtree of height i, and 1 – Ai as the

unavailability of a subtree of height i we can write the

above expression as follows:

Ai+1 = fA
2
i + f(l – Ai) Ai + fAi (l – Ai) + (1 – f)A

2
i

 = 2fAi + (1 – 2f) A
2
i.

Note that the availability of a quorum in a tree with a

single node (height 0) is f, i.e., A0 = f.

In our proposed solution, the number of nodes in the

system is n and the number of nodes in a cluster (i.e.,

cluster size) is C. For optimal solution, all clusters have

the same size C. Letting the height of the binary tree

formed by C nodes as h1, the availability of a quorum in a

cluster is A
1h = 2fA 11 h + (1 – 2f) A

2
11 h .

A quorum q of our solution is defined as

0
qqq

kl
 or

lk
k

q
1

, where
k

q is a quorum

formed from the nodes of a Level k cluster. So the

availability of a quorum in our solution is an aggregation

of the availabilities of ℓ + 1 quorums. As each cluster has

size C, i.e., height h1, the availability is as follows:

A h = A
1h × A

1h × …… up to (ℓ + 1) times = (A
1h)

ℓ+1

Fig. 5(a) and 5(b) show the availability of a quorum for

different level of clustering varying number of nodes (n)

and availability of a node (f) respectively. For higher

level of clustering and lower values of f, availability of a

quorum reduces significantly. It is to be noted that

availability should be considered with message cost in

order to choose optimal level of clustering, so that no

node starves when it requires using the CS. However, to

calculate optimal level of clustering, we do not consider

availability of a quorum assuming that at any instance at

least a quorum is available.

F. An Extension to our Proposed Algorithm

A node of a Level k (0 ≤ k < ℓ) cluster gets

PreCRequest messages from different requesting nodes

of its Level k+1 child clusters. At a time, it does in-

advance processing for a single PreCRequest message;

so, it maintains a counter to keep the number of pending

PreCRequest messages, for which it will do processing

after the completion of the current one. So, when it gets a

CRelease message from a member node of its Level k+1

cluster and its fifo is empty, it may get into

BUSYWAITING state for a threshold time, be identified as

THRESHOLD2, with the hope that, within

THRESHOLD2 a CRequest will come from a requesting

node of its Level k+1 child clusters.

Usefulness of this technique depends on the counter of

pending PreCRequest messages and the value of k. If a

requesting node at Level k gets consensus without

executing ME algorithm at upper levels starting from

Level k−1 to Level 0, message cost is reduced and time is

shortened. So, for larger values of the counter and k, this

technique is more beneficial. We apply this extended

(a) (b)

Fig. 5. Availability of a quorum for different levels of clustering by (a) varying n with f=0.8 and (b) varying f with n=1200.

1.0
00

1.0
00

1.0
00

1.0
00

1.0
00

0.9
90

0.9
94

0.9
95

0.9
96

0.9
96

0.9
48

0.9
58

0.9
65

0.9
69

0.9
73

0.8
78 0.8

99
0.9

11
0.9

20
0.9

23

0.
80

5

0.
82

4

0.
83

6

0.
84

4

0.
85

0

0.7

0.8

0.9

1

600 1200 1800 2400 3000
Number of Nodes (n)

A
v
ai

la
b
il
it
y
 o

f
a

Q
u
o

ru
m

0 Level of Clustering 1 Level of Clustering
2 Level of Clustering 3 Level of Clustering
4 Level of Clustering

1.0
00

1.0
00

1.0
00

0.9
97

0.9
291.0

00

1.0
00

0.9
94

0.9
28

0.6
64

1.0
00

0.9
98

0.9
58

0.7
83

0.4
35

1.0
00

0.9
91

0.8
99

0.6
33

0.2
80

1.0
00

0.9
78

0.8
24

0.5
02

0.1
80

0

0.2

0.4

0.6

0.8

1

1.2

1 0.9 0.8 0.7 0.6
Availability of a node (f)

A
v

a
il

a
b

il
it

y
 o

f
a
 Q

u
o

ru
m

0 Level of Clustering 1 Level of Clustering 2 Level of Clustering
3 Level of Clustering 4 Level of Clustering

technique by following the guidelines below:

1. When the counter value of pending PreCRequest

messages is zero, then this technique is not applied.

2. If the counter value is not zero, then according to a

probability, be identified as PROBABILITY, on the

counter value, this technique is applied. We can use

higher PROBABILITY in case of Level k+1 (0 ≤ k

< ℓ−1) clusters than in case of Level k clusters,

because cost saving is higher in case of the levels

having higher depth from the top. PROBABILITY

can have value 1 to 0. If it is 0, then extended

technique will not be applied at all. In case of high

PROBABILITY, the fairness among the competing

requesting nodes with respect to time-requirement

of getting consensus (delay for a request to satisfy)

becomes low. If PROBABILITY is reduced in case

of consecutive application of this extended

technique by a representing node, the fairness will

increase.

G. Maintenance Algorithm

Maintenance algorithm maintains the correctness of

our mutual exclusion algorithm in case of failures of the

nodes that are executing or participating in the ME

algorithm. It is assumed that when a node x is interrelated

with another node y because of the execution of ME

algorithm, then if y fails, x can detect the failure

[30][31][32]. When x detects such a failure it executes the

maintenance algorithm. This algorithm has two parts.

One part works in case of node failure while another part

handles the case of node recovery. The algorithm along

with its correctness proof is illustrated below with the

help of Fig. 6.

1) In case of Node Failure

Let x be the failed node. It is a member of a Level k

cluster Ck,1. As a representing node, it might be

processing the CRequest of y, a member of a Level k+1

cluster Ck+1,1, in Ck,1. Some nodes of Cluster Ck,1 can be in

the locked state due to this request processing. Some

nodes of Ck,1 can have Request message of x waiting in

their QUEUEs at Level k. Nodes of Cluster Ck−1,1 can also

be in similar situations due to the processing of the

CRequest issued by x to w, representing node of x at

Level k−1. More nodes of different clusters in the

hierarchy might be engaged with this request. How the

maintenance algorithm cancels the engagement of the

nodes with x is described as follows:

 A node z in Level k cluster Ck,1 is in LOCKED state

by the failed node x: When the locked node z detects

that its locking node x has failed, it withdraws its

consensus after waiting for a long enough time to

ensure that there is no node downward in the

hierarchy in BUSY state. Node z is now free to give

consent to any pending request.

 In Level k cluster Ck,1, z has Request from x waiting

in its QUEUE: After detecting x‟s failure, z discards

the request from the QUEUE.

 Representing node w at Level k−1 is processing the

CRequest of its represented node x: If w is in BUSY

state, it waits for a long enough time to ensure that

there is no node downward in the hierarchy in busy

state. Otherwise, no waiting is necessary. Now it

sends Release messages to all the nodes of Cluster

Ck−1,1 to which it has sent requests. w also sends a

CRelease message to its representing node at Level

k−2 (if k−2 ≥ 0), if it has already sent a CRequest

message to it. Following two points are raised in this

case:

o A node u at Level k is not in LOCKED state for

a node v but receives Release message from v:

This occurs when v‟s Request is pending in u‟s

QUEUE at Level k. u just discards the request

from its QUEUE.

o A node u at Level k is not in BUSY state but

receives CRelease message from a node v,

member of a Level k+1 child cluster: If v is the

represented node of u, actions differ depending

on u‟s FIFO at Level k. If the FIFO is not empty,

u takes the next CRequest in the FIFO to

process. As processing is ongoing, it just

replaces v as its represented node with the

sender of CRequest. Otherwise, u sends Release

messages to all the nodes of Cluster Ck−1,1 to

which it has sent requests. It also sends

CRelease to it representing node at Level k−1, if

it has already sent a CRequest to the

representing node. If v is not the represented

node of u, v‟s CRequest is awaiting in its FIFO.

This time, u discards the CRequest from its

FIFO.

 Represented node y sent CRequest to its

representing node x at Level k: If y is in

CREQUESTING state, i.e., waiting for CReply from

x, it selects another representing node at Level k (an

arbitrary member of Ck,1) and sends CRequest to its

new representing node.

2) In case of Node Recovery

Let, x recovers after its failure. Now it can participate

in ME solution starting with an IDLE state. But at the

time of failure it could be in LOCKED state giving

consensus to a fellow node z. If z is still using the

consensus of x, no way x can give consensus to any other

fellow node. Again, as a representing node, x might be in

BUSY state at the time of its failure by sending CReply to

y. So, after recovery, x should take care whether y is still

Fig. 6. An l level of clustered network showing only three

levels (Level k+1 to k-1).

x′

x

y

z z′

x

z

 w

Level k

Level k-1

Level k+1

Ck+1, 1 Ck+1, 2 Ck+1, 3

Ck, 1

Ck−1, 1

using its consensus. How the maintenance algorithm

handles the correctness of the algorithm in these

scenarios is described below:

 After recovery, if x finds that it was in LOCKED

state at the time of its failure and its locking node

was z, it sends a message called NodeRecovery to z.

If z is not using the consensus of x, it sends back a

Release message to x immediately. Otherwise, z

does not respond to the NodeRecovery message. In

this case, x will receive Release message from z

after a period of time, when z finishes the use of x‟s

consensus. Until getting Release message from z, x

will not start to participate in ME algorithm.

 When x recovers, it sends a NodeRecovery message

to its represented node y if x was in BUSY state at

the time of its failure. If y is not using the consensus

(CReply) of x at present, it sends back a CRelease

message to x immediately. Otherwise, y does not

respond to NodeRecovery message. In this case, x

will receive CRelease message from y after a period

of time, when y‟s BUSY state becomes false. Similar

to the previous case, until getting CRelease message

from z, x will not start participating in ME

algorithm.

Remember that when a node recovers it retrieves the

information about its clusters and its parent cluster from

its stable storage (Subsection II.B). We are now making

another assumption to maintain the correctness of the

algorithm in case of failure/recovery: “Each node keeps

the status of its BUSY and LOCKED states along with the

values of locking node and represented node saved in

stable storage so that these data can be retrieved after

recovery.” After recovery all other states and variables

are initialized with their default values.

IV. SIMULATION

We simulate our solution using PARSEC [22], which

is a parallel C–based discrete–event simulation language.

We observe different performance metrics when the

number of nodes in the network increases or the

availability of nodes changes.

Two performance metrics are considered in our

simulation: Message Cost and Waiting Time per CS

Entry. Message Cost is the average message complexity

per request to enter CS, i.e. the average number of

messages required for a node from the request placing to

getting consensus for entering CS. Waiting Time is

defined as the average time that a node spends in waiting

for the CS after its request is placed.

A. Simulation Environment and Parameters

We simulate a peer to peer to network consisting an

arbitrary number (up to 1200) of nodes (entities in

PARSEC) randomly spread over the network. Though the

performance of the proposed solution is analytically

significant for a large number of nodes, more than 1200

nodes are not possible because of the limitation of this

simulation tool. Each run of the simulation has been

triggered for 4000000000 STU (simulation time unit) on

the average.

We assume that the network ensures the ordered

delivery of messages between source and destination. So,

Communication latency between two specific nodes is

taken as constant. Latency time follows a normal

distribution with mean 12 STU and variance 50% of the

mean. The time required for preparing and delivering a

message (processing time) also follows a normal

distribution with mean 8 and variance 50% of the mean.

These values are arbitrary. If we change, for example, the

mean time of communication latency, the behavior of

simulation result for waiting time will remain the same

but with different scales of magnitudes.

A node requests for the CS following a Poisson

process with 0.0000002 (arrival) rate of requests. Thus,

the delay between two requests for CS of a node is an

exponential random variable with mean 5000000 STU.

Node failures are modeled as a Poisson process with a

failure rate. The recovery/restart time from

failure/stoppage of a node follows an exponential

distribution with mean 100000. The failure rate is

calculated from the availability of a node and the

recovery time.

In our simulation we take the assumption that at any

instance at least a quorum is available in a cluster. This

assumption is important to satisfy each CS request. In

Subsection III.E.4, the availability of a quorum in our

system is discussed. Graphs are also plotted there to show

the availability of a quorum in different level of

clustering varying number of nodes (n) and availability of

a node f. From the graph we find that in case of a higher

(>3) level of clustering, the availability of a quorum

becomes very low for n≤1200 and f≤0.8, which is not

feasible for our assumption. Since n cannot be taken as

more than 1200 and we vary n from 600 to 1200 and f

from 1 to 0.75 to show the impact on performance

metrics, we limit level of clustering from 0 to 3.

B. Performance Variation of Multilevel Clustering

In the simulation experiment, we have varied the

number of nodes (n), the availability of a node (f) to

observe the behavior of the performance metrics (i.e.,

Message Cost and Waiting Time) as a function of n or f.

We compare the results of different levels of clustering to

find out the effect of multilevel clustering for different

values of n and f. Remember that, for quorum formation

in the clusters of different levels tree-quorum algorithm

[9] is used.

1) Message Cost

Fig. 7(a) and 7(b) demonstrate the existence of optimal

Fig. 7. Message cost of ME algorithm for different level of clustering in

two networks with n=1200, (a) f=0.95 and (b) f=0.85.

38.5 37 40
47

0

20

40

60

0 1 2 3

Level of Clustering

M
es

sa
g

e
C

o
st

43 42
48.5

67

0

20

40

60

80

0 1 2 3

Level of Clustering

M
es

sa
g
e

C
o
st

 (a) (b)

level of clustering. Here we have taken a single quorum

at a time for requesting in any level of clusters. We find

in Fig. 7(a) that, for a network of 1200 nodes with node

availability of 0.95 optimal level of clustering is 1.

Apparently, it seems that with the increase of level of

clustering, the number of nodes in a cluster decreases

resulting in reduced message cost. But this is not correct

for larger level of clustering. There is optimal level of

clustering, which takes minimum message cost. The

reason of it is straightforward. Firstly, if level of

clustering increases the number of participating clusters

along the path of request processing increases. At the

same time, the layer to layer communication increases.

Secondly, message cost for ME algorithm within a cluster

is linearly proportional to the quorum size. The quorum

size in tree-quorum algorithm is inversely proportional to

the value of f and varies from C
2

log (for high values of

f) to
2

C (for low values of f), where C is the cluster size

(see Equation (1)). Thus larger and smaller sizes of

clusters are desired for high and low values of f

respectively to achieve optimality. These indicate the

situations of high and low level of clustering respectively.

Ultimately, network size and availability affects message

cost for ME algorithm and optimal level of clustering.

Remember Equation (2) derived in Section III for

optimal level of clustering. It also justifies our

explanation that optimal level of clustering (ℓ) depends

on network size and availability. The optimal point that

we see in Fig. 7(b) is different from that we see in Fig.

7(a). This is due to different f (0.85), though n is the

same. Hence, optimal level of clustering is not fixed. It

changes with the change of network parameters n and f.

The impact of n and f on optimal level of clustering is

demonstrated in Fig. 8 and Fig. 9 respectively.

2) Waiting Time per CS Entry

Waiting time for a CS entry is plotted in Fig. 10 and

Fig. 11 against different network sizes (n) and different

values of f respectively. Both of the figures show that a

clustered network outperforms a network without

clustering at ℓ>0. From the figures it is found that though

message cost at some k level of clustering is lower than

that of k–1 level of clustering, the waiting time at former

k level of clustering is still higher than that of the latter.

The reason behind it is that the higher depth for

sequential transmission of CReply and PreCRequest.

C. Performance Comparison

The aim of this subsection is to compare the

performance of our proposed algorithm with that of [25].

For comparison we take two performance metrics:

message cost and waiting time per CS entry. For this

comparison, we consider the result for different f at the

optimal level of clustering only for each of the

algorithms. We also take two other algorithms to compare

with our algorithm, so that the results appear more

Fig. 10. Waiting time per CS entry of ME algorithm for different n

using different level of clustering with f=0.85.

350
395

430

2
2

0

2
3

0

2
3

5

2
3

0

2
3

7

2
4

22
8

0

2
8

8

2
9

4

0

100

200

300

400

500

600

600 900 1200
Number of Nodes (n)

T
im

e

0 Level of Clustering
1 Level of Clustering
2 Level of Clustering
3 Level of Clustering

Fig. 11. Waiting time per CS Entry of ME algorithm for different f

using different level of clustering with n=1200.

1
9
0 2
3
5

1
9
5

2
0
0

2
1
5

2
3
5

2
6
0

2
9
0

2
2
5

2
3
0

2
3
6

2
4
2

2
5
0

2
5
52
9

0

2
9

4

2
9

8

3
0

2

3
3
0

430

920

600

2
8

5

2
8

0

0

200

400

600

800

1000

1 0.95 0.9 0.85 0.8 0.75

Node Availability (f)

T
im

e

0 Level of Clustering
1 Level of Clustering
2 Level of Clustering
3 Level of Clustering

Fig. 8. Message cost of ME algorithm for different values of n

using different level of clustering in a network with f=0.85.

57

71

3
8

.5

4
1 4
3

4
0 4
1 4
24
5 4
6 4
7

.5

65

0

20

40

60

80

100

600 900 1200
Number of Nodes (n)

M
es

sa
g

e
C

o
st

0 Level of Clustering
1 Level of Clustering
2 Level of Clustering
3 Level of Clustering

Fig. 9. Message cost of ME algorithm for different values of f using

different level of clustering in a network with n=1200.

99

155

3
5 3
7 4
0 4
3 4
6 5

1

3
9 4
0 4
1

4
2 4
3

.5

4
5

4
6

4
6

.5

4
7

4
7

.5

4
8

4
8

.5

71

5
2

3
8

3
0

0

20

40

60

80

100

120

140

160

1 0.95 0.9 0.85 0.8 0.75

Node Availability (f)

M
e
ss

a
g

e
 C

o
st

0 Level of Clustering
1 Level of Clustering
2 Level of Clustering
3 Level of Clustering

comprehensive. These are the classic distributed ME

algorithm of Agarwal and Abbadi [9] and the naïve

primary/backup centralized ME algorithm of Alsberg and

Day [39]. In the latter case, we take one primary server

and one backup server. Note that our algorithm, when ℓ =

0 (no clustering), it is actually the mutual exclusion

algorithm of Agarwal and Abbadi. No coordination or

maintenance takes place at ℓ=0.

1) Message Cost

Message costs per CS entry for the centralized

algorithm of [39], classic tree-quorum based ME

algorithm of [9], the multi-level ME algorithm of [25]

and our proposed multilevel ME algorithm are plotted in

Fig. 12 against different availability of nodes (f). For the

last two algorithms, we plot only the optimal message

cost at different f. Figure 12 shows that our algorithm

simply outperforms the others especially when f

decreases. It is worth to mention that, if we decrease the

recovery time for a particular f, the failure rate will

increase and as a result the performance of [25] will be

worse. The same will occur in case of reduced request

rate. In case of primary/backup centralized algorithm,

though it does not have single-point failure, it still suffers

from two-points of failure and failover time during which

requests can be lost. Hence, with the decrease of f,

performance of the centralized algorithm deteriorates

significantly.

2. Waiting time:

Waiting times per CS entry for the three ME

algorithms are plotted in Fig. 13 against f. For multilevel

algorithms, we plot the waiting only for those levels of

clustering where we get optimal message costs. Figure 13

shows that our proposed algorithm outperforms ME

algorithms of [39], [9], and [25], especially when f<0.95.

Though both of the ME algorithm of [25] and our

proposed algorithm use multilevel network hierarchy, the

latter takes less waiting time because of its parallel

processing.

V. CRITICAL EVALUATION

The availability of a quorum in our solution is lower

than the original classic algorithm [9] at low f along with

small n, which is depicted in Fig. 5. Though the algorithm

is especially suitable for large n, it is possible that, in

some clusters quorum formation may become impossible

due to lack of necessary live nodes. Then the requesting

nodes of those clusters will be starved, though there

might be enough live nodes in the system. In the

simulation, we assume that no cluster will be in such a

situation. For the justification of the assumption, we keep

either n or f or both such high, so that each cluster can

have feasible number of live nodes for quorum formation.

In the lower layer, it is possible to associate a node with

one or more clusters other than its primary cluster. Then,

if the node is unable to form quorum in its cluster, it can

utilize other clusters to form quorum. At that time, some

issues will come up to keep consistency. However, we

consider this issue as a topic for further research.

Multilevel organization of a network according to the

optimal level of clustering is important for best

performance. If the members of a network change

significantly, it is better to reorganize the network

according to the new optimal level of clustering. If this

kind of change is frequent, every time it will incur cost

for reorganization.

VI. RELATED WORK

Token based ME algorithm proposed in [5] takes O(log

n) message cost, where n is the number of nodes, which

suffers significantly if the node holding the token fails or

token is lost. Nisho, in [12], presented a highly resilient,

although still complex, token based ME algorithm based

on Suzuki-Kasami‟s algorithm [4].

Ricart and Agrawala [7] proposed the first permission

based ME algorithm where a node needs to collect

permissions from all other nodes for the CS access.

Though the algorithm is deadlock and starvation free, it is

vulnerable to node and communication failures and it is

expensive in terms of communication cost too. Concept

of quorum improves the performance of permission-

based algorithms to a great extent, where to access the CS

a node needs to have permissions only from all of the

nodes of a quorum. Quorum based algorithms [10] are

resilient to node and communication failures and network

partitioning. Communication cost of these algorithms is

proportional to the quorum size. Therefore, these

Fig. 12. Message cost per CS entry of different ME algorithms for

different f with n=1200.

1
8 3

1

4
8

7
2

125

3
0 3

8

5
2

7
1

9
9

3
3 3

9 4
3 4
7 5
1

3
5 3
7 4
1

4
2 4
3

.5

0

30

60

90

120

150

1 0.95 0.9 0.85 0.8

M
es

sa
g

e
C

o
st

Node Availability (f)

Centralized (Primary/Backup) Algorithm

Orignial ME Algorithm of Agarwal and Abbadi

Message Router based Multilevel ME Algorithm

Proposed ME Algorithm

Fig. 13. Waiting time per CS entry of different ME algorithms for

different f with n=1200.

1
1

5

1
9

0 2
7

0

5
1

0

890

1
9

0

2
3

5 3
3

0 4
3

0

6
0

0

2
5

8

2
7

0 3
7

7

3
8

3

3
8

7

1
9

5

2
0

0

2
3

6

2
4

2

2
5

0

0

200

400

600

800

1000

1 0.95 0.9 0.85 0.8

T
im

e

Node Availability (f)

Centralized (Primary/Backup) Algorithm

Original ME Algorithm of Agarwal and Abbadi

Message Router based Multilevel ME Algorithm

Proposed ME Algorithm

algorithms try to achieve two goals: small quorum size

and a high degree of fault tolerance. The majority quorum

algorithm [17] can be considered as the first algorithm of

this kind where to attain mutual exclusion a node must

obtain permissions from a majority of nodes in the

network. Maekawa [8] proposed an ME algorithm by

imposing a logical structure on the network where a node

needs consensus from a specific set of O(√n) nodes to

achieve ME.

Garcia-Molina and Barbara [18] have properly defined

the concept of quorums with the notion of coterie. A

coterie is a set of sets with the property that any two

members of a coterie have a nonempty intersection.

Combining the idea of logical structures and the notion of

coteries an efficient and fault tolerant quorum generation

algorithm for ME is proposed by Agarwal and Abbadi

[9]. Here the nodes form a logical binary tree to generate

quorums. The quorum can be regarded as an attempt to

obtain permissions from nodes along a root–to–leaf path.

If the root fails, then the obtaining permissions should

follow two paths: one root–to–leaf path on the left subtree

and one root–to–leaf path on the right subtree. The

algorithm tolerates both node failures and network

partitions. In the best case, this algorithm incurs

logarithmic cost considering the size of the network.

However, the cost increases with the increase of node

failures.

Sometimes the nodes in a network are divided into

several groups where each group is often called a cluster.

Ahmed and Trelhel [13] proposed a prioritized group

based hybrid algorithm combining token based approach

with permission based approach. Two distributed ME

solutions are presented by Erciyes [14] using a logical

structure where clusters are arranged on a ring. Bertier

proposed two token based algorithms [15] using the

hierarchical network topology, which reduce both latency

cost and number of messages. These two solutions are

modifications of Naimi‟s token based algorithm [6] for

proxy based cluster. As these algorithms are mainly token

based, they suffer due to token failures. Moreover, though

the number of participating nodes is reduced to an extent

in these approaches, further reduction is required for extra

large networks. ME solutions, like our proposed

algorithm, that apply higher level of hierarchy are

suitable in such case.

VII. CONCLUSION

We have proposed a multilevel quorum based solution

for distributed mutual exclusion. Though the proposed

algorithm is cluster based, there is no use of specific

coordinator (message router) for a cluster. Thus, no

reelection of coordinator is required. We have devised the

optimal cluster size taking message cost into

consideration. At the end, we have presented a simulation

result that demonstrates noticeable improved performance

of our algorithm compared to other related algorithms.

Group mutual exclusion (GME) is a recent variant of

the classical mutual exclusion problem, which was

proposed first in [35]. We are going to extend our

hierarchical approach for the solution of GME problems.

Our multilevel technique can be extended for ad-hoc

network to achieve better performance as the rate of node

failures is usually high in ad-hoc networks.

ACKNOWLEDGEMENT

We would like to thank Reazul Karim Mazumdar,

MphasiS Corp., Houston, Texas, USA, for his precious

comments on the paper that helps us to improve the work.

REFERENCES

[1] M. Raynal, “A simple taxonomy for distributed mutual exclusion

algorithms”, ACM SIGOPS Operating Systems Review, Vol. 25,

No. 2, pp. 47-50, 1991.
[2] G. Le Lann, “Distributed systems: towards of a formal approach”,

IFIP Congress, North-Holland, pp. 155-160, 1977.
[3] A.J. Martin, “Distributed mutual exclusion on a ring of processes”,

Science of Computer Programming, Vol. 5, No. 3, pp. 265-276,

1985.

[4] I. Suzuki and T. Kasami, “A distributed mutual exclusion
algorithm”, ACM Transaction on Computer Systems, Vol. 3, No.

4, pp. 344-349, 1985.

[5] K. Raymond, “A Tree based Algorithm for Distributed Mutual
Exclusion”, ACM Transactions on Computer Systems, Vol. 7, No.

1, pp. 61–77, February 1989.

[6] M. Naimi, M. Trehel, and A. Arnold, “A log (N) distributed
mutual exclusion algorithm based on path reversal,” Journal of

Parallel and Distributed Computing, vol. 34, no. 1, pp. 1–13, 10

April 1996.
[7] G. Ricart and A. K. Agrawala, “An Optimal Algorithm for Mutual

Exclusion in Computer Networks”, Communications of the ACM,

Vol. 24, No. 1, pp. 9–17, January 1981.

[8] M. Maekawa, “A N Algorithm for Mutual Exclusion in

Decentralized Systems”, ACM Transaction on Computer Systems,

Vol. 3, No. 2, pp. 145–159, 1985.
[9] D. Agarwal and A. El Abbadi, “An Efficient and Fault–Tolerant

Solution for Distributed Mutual Exclusion”, ACM Transactions on

Computer Systems, Vol. 9, No. 1, pp. 1–20, February 1991.
[10] P. C. Saxena and J. Rai, “A survey of permission-based distributed

mutual exclusion algorithms”, Elsvier Science Publishers B. V.,

Vol. 25, Issue 2, pp. 159-181, May 2003.
[11] J. Misra, “Detecting termination of distributed computations using

markers”, Proceedings of the 2nd ACM Annual Symposium on
Principles of Distributed Computing, pp. 237–249, August 1985.

[12] S. Nisho, K.F. Li and E.G. Manning, “A resilient mutual exclusion

algorithm for computer networks”, IEEE Transactions on Parallel
and Distributed Systems, Vol. 1, No. 3, pp. 344-355, 1990.

[13] Ahmed Housni and Michel Trelhel, “Distributed Mutual

Exclusion Token-Permission based by Prioritized Groups”,
Proceedings of the ACS/IEEE International Conference on

Computer Systems and Applications, pp. 253–259, June 2001.

[14] K. Erciyes, “Distributed Mutual Exclusion Algorithms on a Ring
of Clusters”, ICCSA, SV-Lecture Notes in Computer Science,

2004.

[15] M. Bertier, L. Arantes and P. Sens, “Distributed Mutual Exclusion
Algorithms for Grid Applications: a Hierarchical Approach”,

Journal of Parallel and Distributed Computing (JPDC), Elsevier,

Vol. 66, pp. 128-144, 2006.

[16] L. Lamport: “Time, clocks, and the ordering of events in a

distributed system.”, Communications of the ACM, Vol. 21, No. 7,

pp. 558-564, July 1978.
[17] R. H. Thomas, “A majority consensus approach to concurrency

control”, ACM Transaction on Database System, Vol. 4, No. 2, pp.

180-209, June 1979.
[18] H. Garcia-Molina and D. Barbara, “How to Assign votes in a

Distributed System”, Journal of the Association for Computer

Machinery, Vol. 32, No. 4, pp. 841-860, 1985.
[19] R. D. Schlichting and F. B. Schneider: “Fail-stop processors: an

approach to designing fault-tolerant computing systems”, ACM

Trans. on Computing Systems, Vol. 1, No. 3, pp. 222-238, 1983.
[20] Scott D. Stoller, "Leader Election in Asynchronous Distributed

Systems," IEEE Transactions on Computers, Vol. 49, No. 3, pp.

283-284, March 2000.

http://www-src.lip6.fr/homepages/Pierre.Sens/publications/JPDC06.pdf
http://www-src.lip6.fr/homepages/Pierre.Sens/publications/JPDC06.pdf

[21] C. Fetzer and M. Subkraut: “Leader Election in the Timed Finite
Average Response Time Model”, The 12th Pacific Rim

International Symposium on Dependable Computing, pp. 375–

376, December 2006.
[22] R. Bagrodia, R. Meyerr, and et al.: “PARSEC: A Parallel

Simulation Environment for Complex System”, UCLA Technical

Report, 1997.
[23] C. Olson: “Parallel algorithms for hierachical clustering”, Parallel

Computing, Vol. 21, No. 8, pp. 1331-1325, 1995.

[24] S. Rajasekaran: “Efficient Parallel Hierarchical Clustering
Algorithms”, IEEE Transactions on Parallel and Distributed

Algorithms, Vol 16, No. 6, pp. 497-502, June 2005.

[25] M. A. Rahman and M. M. Akbar: “A Quorum Based Distributed
Mutual Exclusion Algorithm for Multi-Level Clustered Network

Architecture”, Proceedings of Workshop on Algorithm and

Computation (WALCOM), Dhaka, February 2007.
[26] Ralf Steinmetz and Klaus Wehrle (Eds). “Peer-to-Peer Systems

and Applications”, Lecture Notes in Computer Science, Vol 3485,

September 2005.
[27] Mark Baker, Rajkumar Buyya and Domenico Laforenza, “Grids

and Grid Technologies for Wide-Area Distributed Computing”,

Software: Practice and Experience (SPE), Wiley Press, vol. 32,
No. 15, pp. 1437-1466, December 2002..

[28] DeadLine- a free equation solver, http://deadline.3x.ro/,

http://www.soft32.com/Download/Free/DeadLine/4-7467-1.html.
[29] F. Cristian and C. Fetzer; “The Timed Asynchronous Distributed

System Model”, IEEE Transactions on Parallel and Distributed

Systems, Vol. 10, No. 6, pp. 642–627, June 1999.
[30] T. D. Chandra and S. Toueg: “Unreliable failure detectors for

reliable distributed systems”, Journal of the ACM, Vol. 43, No. 2,

pp. 225-267, March 1996.
[31] Raimundo Jose and Araujo Macedo: “Failure Detection in

Asynchronous Distributed Systems”, Proceedings of II Workshop

on Tests and Fault-Tolerance, pp. 76-81, July 2000.
[32] C. Fetzer: “Perfect Failure Detection In Timed Asynchronous

Systems”, IEEE Transactions on Computers, Vol. 52, No. 2, pp.

99-112, February 2003.
[33] Pragyansmita Paul and S. V. Raghavan , “Survey of multicast

routing algorithms and protocols”, Proceedings of the 15th
international conference on Computer communication, pp. 902-

926, August 2002.

[34] M. Ashiqur Rahman, M. S. Alam and M. M. Akbar, “A Two
Layer Quorum Based Distributed Mutual Exclusion Algorithm”,

Proceedings of the 9th International Conference on Computer and

Information Technology (ICCIT), December 2006.

[35] M. Ashiqur Rahman, M. M. Akbar and M. S. Alam, “A
Permission Based Hierarchical Algorithm for Mutual Exclusion”,

Special Issue, Journal of Computers, Vol. 5, No. 12, December

2010.
[36] Y. J. Joung, “Asynchronous Group Mutual Exclusion”,

Proceedings of the 17th ACM Symposium on Principles of

Distributed Computing, pp. 51–60, June 1998.

[37] Mike Burrows, “The Chubby lock service for loosely

coupled distributed systems”. In Proceeding of OSDI,

2006.

[38] ZooKeeper, http://sourceforge.net/projects/zookeeper.

[39] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg,

The primary-backup approach”, Distributed Systems (2nd

Edition), ACM Press, NY, USA, pp. 199–216, 1993.

Mohammad Ashiqur Rahman He

received his BSc and MSc in Computer

Science and Engineering from BUET,

Dhaka, Bangladesh in 2004 and 2007

respectively. His primary research area

focused on distributed systems and

computing, computer networks,

information and network security.

Currently he is a PhD student of the

Department of Software and Information

Systems, University of North Carolina at Charlotte, USA.

Md. Mostofa Akbar He received his

BSc and MSc in Computer Science and

Engineering from BUET, Dhaka,

Bangladesh in 1996 and 1998

respectively. He received his PhD from

University of Victoria, Canada in 2002.

His research interests focus on operations

research, distributed systems, computer

networks, wireless sensor and mobile ad

hoc networks.

Currently he is working as a Professor in Department of

CSE, BUET.

