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Abstract—With the growing adoption of unmanned aerial
vehicles (UAVs) across various domains, the security of their
operations is paramount. UAVs, heavily dependent on GPS
navigation, are at risk of jamming and spoofing cyberattacks,
which can severely jeopardize their performance, safety, and
mission integrity. Intrusion detection systems (IDSs) are typically
employed as defense mechanisms, often leveraging traditional
machine learning techniques. However, these IDSs are susceptible
to adversarial attacks that exploit machine learning models by
introducing input perturbations. In this work, we propose a novel
IDS for UAVs to enhance resilience against such attacks using
generative adversarial networks (GAN). We also comprehensively
study several evasion-based adversarial attacks and utilize them
to compare the performance of the proposed IDS with existing
ones. The resilience is achieved by generating synthetic data
based on the identified weak points in the IDS and incorporating
these adversarial samples in the training process to regularize the
learning. The evaluation results demonstrate that the proposed
IDS is significantly robust against adversarial machine learning-
based attacks compared to the state-of-the-art IDSs while main-
taining a low false positive rate.

Index Terms—Unmanned aerial vehicles, embedded systems,
adversarial attacks, machine learning, generative adversarial
networks, intrusion detection systems

I. INTRODUCTION

Unmanned aerial vehicles (UAVs), also known as drones,
have garnered significant global interest over the last
decade [1] and have become an indispensable technology for
various critical missions across civilian [2], commercial [3],
and military [4] sectors. This increased success is owed to
their successful operations in multidimensional fields such as
relief provision in disaster-stricken areas [5], [6], search and
rescue operations for missing persons [7], mobile data sensing
and relaying in IoT environment [8], border and coastal
surveillance for security purposes [9], construction/mining site
monitoring [10], as well as in military warfare [11]–[13].
Owing to UAVs’ versatility and diverse applications, maintain-
ing end-to-end security and safety and ensuring resiliency in
operations is paramount for their effective and precise mission
execution. The implications of security breaches in UAVs can
range from jeopardizing personal privacy and national interests
to enabling industrial espionage, leaking sensitive information,
and threatening mission integrity. Ensuring the safety of UAV

operations is paramount, and security measures should rein-
force rather than undermine this safety. Like many autonomous
vehicles, UAVs rely heavily on global positioning system
(GPS)-based navigation and control systems. This reliance
increases their vulnerability to cyberattacks like GPS jamming
and spoofing [14], [15]. GPS jamming disrupts the signals
to the UAV, causing a Denial-of-Service (DoS) attack that
impedes accurate location determination [16]. In contrast, GPS
spoofing transmits false data to mislead the UAV, altering its
trajectory [17]. These attacks can significantly compromise the
UAV’s performance, safety, and reliability, potentially leading
to control loss, in-flight collisions, or unauthorized access to
sensitive data. Given their severity and increasing occurrence,
addressing these threats provides a tangible context to study
the robustness of UAV intrusion detection systems.

Extensive research investigations have been conducted to
defend against sensor attacks like GPS spoofing and jamming.
Some common defense techniques include data fusion and
redundancy [18] and cryptography [19]. Others involve signal
processing [20], and probabilistic analyses [21]. The most
common defense technique is to deploy an intrusion detection
system (IDS) to identify and mitigate these attacks. These
IDSs often rely on traditional machine learning techniques
such as one-class classification [22], [23], where the benign
space is learned as the normal and anything outside that
space is classified as an anomaly/intrusion, or multi-class
classifications, where some of the attack parameters are also
known, and different attacks can be categorized. Catering to
the non-linear relationship between the features of UAVs, most
of the IDS models use neural networks to attain an adequate
mapping between the features. Nevertheless, despite their
effectiveness in detecting and mitigating attacks, these neural-
network-based IDS models remain vulnerable to adversarial
attacks [24], [25], designed to exploit models’ weaknesses by
introducing carefully crafted input perturbations.

Fig. 1 illustrates how adversarial machine learning can
exploit IDS vulnerabilities to launch undetected GPS spoofing
attacks on UAVs. Attackers can create benign-looking adver-
sarial samples and bypass the IDS, leading to trajectory devi-
ation and potential mission compromise. The ground control
station sends precise GPS commands to the UAV, while a
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Fig. 1. Impact of Adversarial Machine Learning on IDS in UAV GPS Spoofing: Adversarial machine learning algorithms can generate spoofed GPS coordinates
that evade the IDS, leading to undetected attacks and degraded IDS performance in UAV missions.

satellite spoofer generates falsified GPS coordinates to mislead
the drone. Owing to the stealthy nature of the attack, the IDS
fails to recognize the malicious intent behind the adversarial
samples and classifies them as benign, allowing the UAV to
continue its mission based on the spoofed coordinates. This
highlights the need for more robust and resilient IDS models
to counter adversarial attacks and ensure the security and
reliability of UAVs.

In this paper, we study the impact of several evasion-
based adversarial attacks, like the fast gradient sign method
(FGSM) and projected gradient descent (PGD) attack, on
the performance of an IDS that secures UAVs against such
attacks. Here, we present a novel approach to enhance the
performance of IDSs for UAVs by leveraging adversarial
learning techniques. By addressing vulnerabilities highlighted
by these adversarial attacks, we employ generative adversarial
networks (GANs) to generate synthetic data to address these
weak points, thus augmenting the resilience of the IDS against
attacks like GPS spoofing and jamming. Moreover, we add the
adversarial samples as a regularizer in our training process
for further augmented resilience. Through extensive experi-
mentation and evaluation, we demonstrate that our proposed
approach augments the robustness of IDS models against
adversarial attacks. For this, we explore several key research
questions. We examine whether our framework can enhance
IDS resilience in UAVs against diverse adversarial attacks. We
also study if adversarial learning and GAN data can improve
this resilience. Additionally, we evaluate different IDS models’
performance by analyzing MSE distributions, investigating
adversarial augmentation impacts, and studying model stability
and sensitivity. Overall, our contributions are threefold:

• We provide an in-depth analysis of the vulnerabilities of
existing IDS models for UAVs against adversarial attacks.

• We demonstrate the application of GAN and adding
adversarial samples as a regularizer in improving the
resilience of the existing IDS by augmenting data for

weak points highlighted by adversarial learning.
• Finally, we evaluate the proposed methodology’s effec-

tiveness in enhancing detection performance while main-
taining low false positives for GPS attacks.

The rest of the paper is organized as follows: Section II
briefly discusses existing works. Section III summarizes GPS
navigation in UAVs and adversarial learning-based defenses.
Section IV discusses the threat model. Section V analyzes
impact of adversarial attacks on existing IDSs. Sections VI,
VII, and VIII describe model architecture, proposed defense
framework, and experimental validation, respectively. Finally,
Section IX concludes the paper.

II. RELATED WORK

This section reviews state-of-the-art defenses for UAVs,
focusing first on adversarial learning-based approaches and
then on existing IDSs for UAVs.

A. Adversarial Learning-based Defenses for UAVs

UAVs’ reliance on deep learning makes them vulnerable
to adversarial attacks. Thus, robust defenses are crucial for
reliable and secure UAV operations. Tian et al. explore the
domain of adversarial attacks and defenses in UAVs employing
deep learning. They introduce an adversarial training approach
to bolster the UAVs’ resistance to such attacks while preserv-
ing high classification accuracy [26]. Furthermore, Hu et al.
introduce a secure estimation algorithm to counter adversarial
cyber attacks on UAVs. They establish a mathematical attack
model and devise a defense technique ensuring accurate state
estimation of the UAV amidst adversarial interference, thereby
enhancing its resilience and guaranteeing safe operation [27].
Raja et al. delve into adversarial attacks and defenses for AI-
driven UAV infrastructure inspections. They suggest a defense
mechanism based on adversarial training, enhancing the AI
model’s robustness in infrastructure checks and improving
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the security of UAV operations in these settings [28]. More-
over, Doyle et al. study the vulnerabilities of UAVs through
adversarial learning. They analyze the impact of adversarial
attacks on UAVs and propose defense strategies to mitigate
these threats, emphasizing the importance of developing more
robust and resilient UAVs [29]. Also, McCloskey employs
GANs to enrich UAV image classification datasets, showing
that this augments classification performance through high-
quality synthetic samples. [30]. Furthermore, Guptha et al.
propose a GAN-based approach for object detection in UAVs,
incorporating fusion technology, which improves the object
detection performance of UAVs, making them more robust
and reliable for various applications [31].

B. Intrusion Detection Systems for UAVs

As UAVs become integral to various sectors, safeguarding
them against cyber threats is crucial. IDSs play a vital role
by detecting anomalies like GPS spoofing and jamming in
network activity. Basan et al. suggest using entropy to detect
changes in traffic patterns caused by DoS attacks on nearby
UAVs by training a neural network to detect attacks on
neighboring, rather than directly targeted, UAVs [32]. Al-
Haija et al. employ UAV-IDS-ConvNet, a deep convolutional
neural network, for UAV intrusion detection. They analyze
encrypted Wi-Fi traffic from Parrot Bebop, DBPower UDI,
and DJI Spark models [33]. Praveena et al. introduce a
technique using deep reinforcement learning and the Black
Widow Optimization (DRL-BWO) algorithm for UAV network
security. This method also integrates an enhanced Deep Belief
Network (DBN) for intrusion detection [34]. Recognizing the
lack of consistent datasets for UAV IDSs, Whelan et al.
introduce MAVIDS, a novelty-based one-class classification
system. MAVIDS interfaces with the flight controller to deploy
measures like disabling sensors and is tested against GPS at-
tacks [22]. To defend UAVs against cyber-attacks, Mitchell and
Chen suggest a specification-based detection method in [35].
This study uses a behavior rule-based UAV-IDS built on
defined threat models for various attacks. It aims to optimize
UAV security and performance by reducing false positives and
negatives. While existing research has examined methods for
securing UAVs against sensor attacks such as GPS spoofing
and jamming, there has been little investigation into the impact
of adversarial attacks on these defenses, nor on the robustness
of existing IDSs against such attacks. Our research seeks to
address this gap by investigating the impact of adversarial
attacks on existing IDSs and identifying their weak points.
We then propose a novel approach to augment the training on
these weak points to strengthen the IDS and provide a more
comprehensive defense.

III. BACKGROUND

In this section, we discuss the UAV GPS-navigation sys-
tem, the role of adversarial machine learning in UAVs, IDS
defenses, and the motivation behind our research.

A. GPS-based Navigation and Flight Control in UAVs

UAVs use GPS navigation for accurate, real-time position-
ing, velocity, and altitude data. UAVs pinpoint their location
in 3D space by connecting to multiple GPS satellites, enabling
trajectory adjustments and consistent mission course. The
flight controller, a critical component of the UAV navigation
system, processes GPS data and other sensor information
to regulate the UAV’s movements. This controller comprises
various algorithms and control loops, ensuring the UAV main-
tains its desired position, altitude, and orientation. Typically
utilizing a proportional-integral-derivative (PID) controller, the
position control loop adjusts the desired velocity based on the
current and target positions. The velocity control loop modifies
UAV thrust to match this desired velocity, leveraging a PID
controller to calculate and correct any velocity error. Control
loops process GPS and sensor data to maintain the UAV’s
desired trajectory. The position loop directs the UAV’s path,
while the velocity loop adjusts speed and responds to external
factors like wind/obstacles. This combination ensures accurate
and reliable navigation for UAVs.

B. Adversarial Learning in IDS-based Defense for UAVs

Adversarial machine learning poses a significant threat to
IDSs designed to protect against GPS spoofing and jamming
attacks. By leveraging model vulnerabilities, adversaries can
use input perturbations (δGPS) that lead to misclassification,
allowing them to bypass the IDS undetected. This is depicted
as adding (δGPS) to the original signal (GPSorig) in Eq. 1.

GPSadv = GPSorig + δGPS (1)

Adversarial attacks can subtly alter GPS signals, leading
IDS to mislabel benign signals as threats (false positives) or
overlook actual threats (false negatives), jeopardizing UAV
safety. Attackers craft these signals by optimizing perturba-
tions (δGPS), as illustrated in Eq. 2, where εGPS denotes the
maximum perturbation limit.

minimize
δGPS

∥δGPS∥

subject to: IDS(GPSorig + δGPS) ̸= IDS(GPSorig),

∥δGPS∥ ≤ εGPS. (2)

A predefined threshold limits the magnitude of adversar-
ial perturbation (δGPS) applied to the original GPS sample
(GPSorig) to form the adversarial GPS sample (GPSadv).
This constraint ensures the adversarial perturbation is subtle,
evading IDS detection but causing misclassification. The goal
is to find an optimal perturbation within this limit to bypass
the IDS effectively. Misclassifying benign signals as attacks
or vice versa can have severe consequences. If benign signals
are labeled as attacks, they can disrupt or disable the UAV’s
navigation or control system, resulting in crashes or loss of
control. False positives can also trigger unnecessary counter-
measures, causing operational disruptions and potential harm.
If malicious signals are deemed benign, the IDS might not
react, enabling undetected attacks that jeopardize safety and
potentially compromise safety and security.
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C. Research Motivation

Given the expanding role of UAVs in various sectors,
securing their GPS-based navigation systems is crucial. While
IDSs have been deployed to safeguard UAVs against cyber-
attacks, these systems are still susceptible to adversarial attacks
targeting the underlying machine learning models used for
detection [36]. Ensuring the security and reliability of UAV
navigation systems is critical, and developing robust defense
mechanisms is essential for their safety and effectiveness
across diverse applications and industries [37]. Adversarial
attacks on GPS samples can lead to misclassifications within
the system’s intrusion detection mechanisms. Such misclassifi-
cations could result in false alarms or, more critically, failure to
detect actual GPS spoofing or jamming attacks. Consequently,
the UAV might rely on tampered GPS data, leading to incorrect
navigation decisions, deviation from the intended flight path,
or even mission failure. In more extreme cases, adversarial
manipulation of GPS data might cause the UAV to collide
with obstacles, enter restricted airspace, or suffer damage due
to improper altitude and velocity adjustments. Our primary
objective is to explore how adversarial attacks impact UAV
IDSs that rely on GPS data. We delve deep into the conse-
quences these adversarial attacks pose on both the GPS data
and the functioning of the UAV IDS by analyzing the resulting
misclassifications, navigation errors, and mission failures to
identify vulnerabilities and propose countermeasures.

IV. THREAT MODEL

This section outlines the threat model for adversarial attacks
on UAV data and IDSs, detailing adversarial goals, capabili-
ties, and attack methods.

A. Adversarial Goals

The primary goals of adversaries targeting UAVs with GPS
spoofing and jamming attacks in the presence of an IDS are
as follows:

• Compromise the integrity of the UAV’s navigation system
by injecting false GPS data, leading to incorrect naviga-
tion decisions and deviations from the intended path.

• Evade detection by the UAV’s IDS, allowing the attacker
to remain undetected and potentially cause harm to the
UAV or its mission.

• Disrupt the UAV’s mission, causing delays, loss of valu-
able data, or even mission failure.

B. Adversarial Capabilities

The adversaries are assumed to possess the following capa-
bilities:

• Access to specialized hardware and software tools that
enable them to generate and transmit GPS spoofing and
jamming signals.

• Knowledge of the UAV’s GPS-based navigation system
and the machine learning models used by the IDS.

• Ability to create adversarial samples by exploiting the
vulnerabilities in the IDS’s machine learning model to
bypass the detection mechanisms.

Algorithm 1: Adversarial Attack Impact Analysis
Input: Model M , Dataset D, Epsilons ϵ
Output: Accuracies for FGSM and PGD attacks
Initialize attacks: FGSM and PGD
for each attack A in attacks do

for each ϵ in epsilons do
Generate adversarial samples Xadv using attack A

with the given ϵ: Xadv ← A(M,D, ϵ)
Calculate the model output for the adversarial

samples: O ←M(Xadv)
Compute mean squared error (MSE) between

original and adversarial samples:
MSE(i)← 1

N

∑N
n=1(D

n
i −On

i )
2

Update labels based on the computed MSE

threshold: yadvi ←

{
1, if MSE(i) > threshold
0, otherwise

Calculate the accuracy of the model on the
adversarial dataset: Acc← 1

N

∑N
i=1 I(yadvi = yi)

Save and plot the accuracy for the current attack A
and ϵ

end
end

C. Attack Methodology

Adversaries target UAVs using GPS spoofing and jam-
ming, leveraging knowledge of the target system, its GPS
navigation, intrusion detection systems, and machine learning
models. Using this information, they craft adversarial samples
to exploit IDS vulnerabilities, causing misclassifications or
bypassing detection. Upon creating adversarial samples, the
attacker launches an assault on the UAV’s navigation system,
leveraging GPS spoofing or jamming signals to undermine
its IDS. The attack’s success is continuously monitored, and
the strategy is adjusted accordingly, involving new adversarial
samples or attack methodology alterations. The attacks carried
out in this paper are the fast gradient sign method (FGSM) and
projected gradient descent (PGD) attack.

FGSM is a white-box attack that creates adversarial samples
by perturbing input data based on the loss function’s gradient.
Essentially, it linearizes the loss and utilizes gradients for
maximization. An adversarial sample xadv is generated by
adding a small perturbation to the original input x. This
perturbation is determined by the sign of the gradient of the
loss function J concerning the input x and the true label of
the input ytrue. A small constant ϵ controls the magnitude of
the perturbation. FGSM is given by Eq. 3. Here, xadv denotes
the adversarial sample, x is the original input, and ϵ limits the
perturbation’s size. The term sign(∇xJ(x, ytrue)) captures the
gradient sign of the loss function J relative to input x, with
ytrue being x’s true label.

xadv = x+ ϵ · sign(∇xJ(x, ytrue)) (3)

PGD is an iterative variant of FGSM and is considered to be
more powerful. It performs multiple FGSM-like steps with a
smaller step size, and after each step, it projects the perturbed
input back into a defined ϵ-ball around the original input.

4



0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Samples

0.0

0.2

0.4

0.6

Sc
al

ed
 A

lti
tu

de
Adversarial Example (Epsilon = 0.1) for FGSM

Original
Adversarial

(a)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Samples

0.0

0.2

0.4

0.6

Sc
al

ed
 A

tti
tu

de

Adversarial Example (Epsilon = 0.35) for PGD

Original
Adversarial

(b)

Fig. 2. Comparative analysis of the original and adversarial samples generated
under (a) fast gradient sign method (FGSM) attack with epsilon = 0.1 and (b)
projected gradient descent (PGD) attack with epsilon = 0.35.

The goal is to optimize the loss within this epsilon-bound.
An iterative process generates an adversarial sample in the
PGD attack. At each iteration t, the adversarial sample xt

adv

is updated by adding a perturbation proportional to the sign
of the gradient of the loss function J concerning the input
xt
adv and the true label of the input ytrue. This perturbation

is then projected onto the ϵ-ball around the original input x.
A constant α controls the step size for each iteration.

V. CASE STUDY: ANALYZING ADVERSARIAL ATTACKS ON
AUTOENCODER ONE-CLASS CLASSIFIER

This section evaluates how an autoencoder classifier iden-
tifies GPS attacks on UAVs under adversarial challenges,
particularly at varying perturbation levels.

A. Adversarial Example Generation

We generate adversarial samples using the FGSM and PGD
attacks with varying epsilon values. To better understand the
robustness of the model, we also explore the classifier’s re-
sponse to minute perturbations that closely mimic normal data
variations, providing a more comprehensive evaluation of its
resilience. We then assess the classifier’s performance against
each epsilon. This provides insights into the relationship
between the magnitude of the adversarial perturbations and
the degradation in the classifier’s performance. The adversarial
samples are shown in Algorithm 1. These adversarial samples
significantly impair the IDS’s classification accuracy despite
their proximity to the original data in the feature space.
Specifically, under an FGSM attack with an epsilon parameter
set to 0.1, the IDS’s accuracy substantially dropped from
an initial 93.8% to a mere 73.46%. Similarly, under a PGD
attack with an epsilon of 0.35, the accuracy decreased from
93.8% to 77.1%. This is visualized in Fig. 2(a) and 2(b),
respectively. This highlights the IDS’s vulnerability and sensi-
tivity to adversarial perturbations, where minor alterations can
confuse the IDS into misclassifying the data. This emphasizes
the importance of incorporating adversarial training or other
defensive measures into the IDS to mitigate the risks posed
by adversarial attacks. As the epsilon value increases, the
adversarial perturbations become more noticeable, but their
ability to reduce the accuracy of the IDS also increases. Un-
derstanding this trade-off is vital for creating potent adversarial
attacks and building strong defenses.
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Fig. 3. Feature Importance Visualization with LIME: (a) Benign (Class
0), (b) Malicious (Class 1), (c) FGSM Adversarial (Class 1), (d) PGD
Adversarial (Class 1). This illustrates key features impacting predictions via
LIME explanations.

B. Feature Importance Analysis

This part of the case study examines feature importance
within the model’s decision-making process. This is achieved
by the local interpretable model-agnostic explanations (LIME)
method, which provides interpretability by revealing influential
features in individual predictions, allowing the identification of
key factors. Green indicates features supporting a prediction,
while red shows features countering it. Comparing feature im-
portance between clean and adversarial instances helps detect
significant shifts and potential vulnerabilities that adversarial
attacks can exploit. This can reveal how adversarial attacks
might influence or shift the classifier’s attention toward or
away from specific features. The primary features contributing
to the decision-making process for benign instances of the
clean data are shown in Fig. 3(a), where, as visualized, the
most important features are satellites used and noise per ms.
For malicious instances in the clean dataset, as presented
in Fig. 3(b), features like noise per ms and time utc usec
are more important. These characteristics serve as pivotal
decision-makers for the autoencoder classifier. Furthermore,
for adversarial data samples under FGSM attack, the distin-
guishing features, as depicted in Fig. 3(c), are alt and eph.
Similarly, adversarial samples under PGD attack, as inferred
from Fig. 3(d), important features are alt and eph. Fig. 3
shows the comparison of benign, malicious, and adversarial
data reveals significant differences in the importance of certain
features [38], [39]. This suggests that attackers might target
these varying feature significance. For instance, if an adversary
recognizes that the IDS gives undue importance to specific
features under adversarial conditions, they can craft inputs that
manipulate these features, effectively diverting the classifier’s
attention and making genuine malicious activities harder to
detect. By understanding key features, adversaries can refine
attacks using methods like PGD for greater impact. Building
models that can resist these tactics is crucial, especially in
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Fig. 4. Comparative Analysis of Classifier Accuracy under (a) FGSM and
(b) PGD adversarial attacks, with varying perturbation strength (epsilon) and
different proportions of adversarial samples (mixed ratio).

security-focused applications like UAV IDS.

C. Impact of Mixed Ratios and Epsilon

To delve deeper into the impact of FGSM and PGD attacks
on our classifier, we tested its performance on datasets with
different proportions of clean and adversarial samples. By
analyzing accuracy across varied mixed ratios and perturbation
strengths (epsilon), we gauged how the classifier responds to
different adversarial threat levels. This study is vital to grasp
the IDS’s resilience and pinpoint which adversarial conditions
most affect its accuracy.

Under an FGSM attack, for lower epsilon values (weaker
adversarial perturbations), the model’s accuracy remains rel-
atively high even as the mixed ratio increases. The model’s
accuracy decreases as the epsilon value increases, particularly
for higher mixed ratios. Under a PGD attack, the model’s
accuracy is more sensitive to epsilon changes in the PGD case.
The accuracy decreases more drastically as the epsilon value
increases, particularly for higher mixed ratios. The model
performs worse under a PGD attack than an FGSM attack.
The performance of the autoencoder-based on-class classifier
model under FGSM and PGD attacks with variation in mixed
ratio and epsilon can be seen in Fig. 4(a) and 4(b), respectively.
The classifier’s performance is generally worse under PGD
attacks compared to FGSM attacks. This is likely due to
the iterative nature of PGD attacks, which generate more
diverse and challenging adversarial samples. Fig. 4 shows
the classifier’s decreasing accuracy with rising epsilon values
and mixed ratios, especially under PGD attacks compared to
FGSM.

VI. MODEL ARCHITECTURE AND DATASET FOR IDS

We employ a deep-learning autoencoder for one-class clas-
sification in an IDS to detect GPS spoofing and jamming.

A. Model Architecture

The autoencoder model consists of two primary compo-
nents: the encoder and the decoder. The encoder maps the
input GPS data (x) into a lower-dimensional latent space
representation (z) as can be seen in Eq. 4. At the same
time, the decoder reconstructs the original input data from the
latent space representation as shown in Eq. 5. The autoencoder

is trained to minimize the difference between the input and
reconstructed data, thereby learning the normal behavior.

Encoder: z = fθ(x) (4)

Decoder: x′ = gϕ(z) (5)

In our autoencoder framework, we use the encoder fθ and
decoder gϕ, parametrized by θ and ϕ. The goal is to reduce the
reconstruction error to improve output fidelity to the input. We
utilize a deep feed-forward neural network in our architecture,
designed to learn the normal behavior of GPS data. Normal
GPS data refers to the patterns we observe when a UAV
operates without external malicious influence, while abnormal
data indicates potential tampering or adversarial attacks. The
input layer has 21 neurons, corresponding to the UAV data
features, followed by three dense layers with 40, 20, and 40
neurons, all using the rectified linear unit (ReLU) activation
function. The output layer uses 21 neurons and a linear
activation to reconstruct input and minimize error, capturing
the UAV data’s essence.
Exploitation of autoencoder-based IDS by adversarial
learning: Adversarial learning generates perturbed versions
of input called adversarial samples to manipulate the model’s
outputs. Techniques like FGSM can be used to craft adver-
sarial samples that exploit the model’s architecture, leading
to compromised performance. Our autoencoder-based IDS for
UAVs can be vulnerable to adversarial learning in two ways.
Attackers can generate adversarial samples in the input space,
deceiving the autoencoder into reconstructing false data as
normal UAV data, misclassifying attacks as benign, and allow-
ing attackers to bypass defense mechanisms. This approach
targets the input layer and the encoder function, exploiting
their susceptibility to slight perturbations in the input data.
Secondly, an attacker could generate adversarial samples in the
latent space representation (z), inducing a large reconstruction
error in the autoencoder. This tactic would cause the IDS
to misclassify benign data as an attack, leading to false
alarms and potentially undermining the system’s credibility.
By exploiting the decoder function and the reconstruction
process, the attacker can manipulate the autoencoder’s internal
representations and mislead the UAV while disrupting the
IDS’s ability to detect attacks accurately.

B. UAV Dataset for IDS Development and Evaluation

We utilize the UAV Attack Dataset [40], an open-access
dataset, to detect GPS spoofing and jamming attacks on UAVs,
investigate the impact of adversarial attacks on the IDS, and
finally, evaluate our proposed framework. This dataset is a
comprehensive collection of flight logs designed for studying
GPS spoofing and jamming attacks on UAVs. This open-
access dataset includes data from benign flights and flights
with GPS interference. It provides various features, such
as latitude, longitude, velocity, heading, and GPS quality
indicators. It enables researchers to develop and evaluate
IDSs specifically tailored for UAVs, offering valuable insights
into UAV behavior under different flight conditions. From
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Algorithm 2: Proposed Defense Methodology
Input: Original data D, Autoencoder model M
Output: Improved autoencoder model Mimproved
Train InfoGAN with WGAN loss using D and M ;
Generate new data points using InfoGAN;
Combine D and generated data;
Split data into training set Dtrain and validation set Dval;
Train WGAN with gradient penalty using Dtrain;
for i← 1 to N do

Update the WGAN discriminator using real and
fake samples;

Update the WGAN generator using the
discriminator’s feedback;

Train M using reconstructed samples of Dtrain;
Evaluate M on Dval;
if performance of M on Dval improves then

Update Mimproved with M ;
end
else

Break the loop;
end

end
Output: Improved autoencoder model Mimproved

the wide array of features in the dataset, we chose features
such as evh, time utc usec, lat, lon, heading, z deriv, vz,
ax, hdop, vel m s, q[2], jamming indicator, vel e m s, and
noise per ms for training our autoencoder-based IDS. The au-
toencoder identifies GPS spoofing/jamming by noting elevated
reconstruction errors. This helps the one-class IDS distinguish
between normal and anomalous data, effectively detecting GPS
interference. Sensor data were merged by timestamps, and
missing values were addressed through linear interpolation.
The remaining gaps were filled using forward and backward
filling. We removed irrelevant columns and assigned labels
to different flight types. Selected features were standardized
for consistent input to the autoencoder-based IDS. The pre-
processed data were used to develop and evaluate the IDS,
specifically targeting GPS spoofing and jamming detection.
After selecting the relevant features for our analysis, we
applied the MinMaxScaler to the data, excluding the ‘Label’
column. The scaled data was split into training and testing sets
using a fixed random state for result reproducibility, ensuring
a consistent input format and enabling accurate evaluation of
its performance in detecting attacks.

VII. PROPOSED GAN AND ADVERSARIAL
SAMPLES-BASED DEFENSE

The proposed framework strengthens UAV IDS by combin-
ing InfoGAN and WGAN for data generation and integrating
adversarial samples for enhanced autoencoder training.

A. Generation of New Data Points

Let D be the original dataset consisting of input samples
X = x1,x2, ...,xn, where each xi ∈ Rd represents a feature

vector, and Y = y1, y2 denotes the corresponding benign or
malicious labels. Let M be the autoencoder model, which
reconstructs the input samples X by learning a latent rep-
resentation space. The model learning parameter is the mean
squared error (MSE) between the original and reconstructed
input. Let T be the threshold for the autoencoder-based one-
class classifier to identify the anomaly points. To generate
new data points for these points, we train a combination of
InfoGAN and WGAN, consisting of a generator G and a
discriminator D, using the original dataset D. The generator
generates synthetic data points resembling the original data,
while the discriminator differentiates between the original and
generated data. We compute the MSE for each input sample xi

using the autoencoder model M and identify the weak points
as samples with MSE close to or above the threshold T .

B. Training the Autoencoder with the Generated Data Points
In this step, we retrain the autoencoder model using the

generated data points to improve its understanding of the
data distribution, especially in the weak areas of the input
space. We combine the original dataset D with the generated
data points. The combined dataset is then split into training
and validation sets, denoted as Dtrain and Dval, respectively.
We initialize the autoencoder model Mimproved. Next, we train
Mimproved using the combined dataset Dtrain, encouraging the
model to minimize both the reconstruction error (MSE) and
the adversarial perturbations present in the generated data until
the performance of the model on the validation set stops
improving. We evaluate Mimproved on the validation set Dval
to monitor its performance.

C. Incorporating the Adversarial Samples for Regularization
The IDS aims to learn a reliable representation of be-

nign data to detect anomalies. Adversarial samples exploit
weaknesses in the learned representation. Using adversarial
samples as a regularizer involves including them in training
to enhance the autoencoder’s robustness. The model learns a
more resilient representation by minimizing the reconstruction
error for both benign data and adversarial samples. This
incorporation helps prioritize the aspects of data that are less
susceptible to manipulation or perturbations. Let X be the
input space consisting of input samples xi ∈ X , and let Xadv
denote the set of adversarial samples generated from X . The
autoencoder model M aims to reconstruct the input samples X
by learning a latent representation space. The autoencoder is
trained using a modified optimization objective, incorporating
a reconstruction loss term, comparing original input samples
with their reconstructions by incorporating the adversarial
samples as a regularizer shown in Eq. 6. To enhance ro-
bustness, a regularization term based on adversarial samples
is introduced. By penalizing adversarial reconstructions, the
model becomes less perturbation-sensitive and more resilient
to adversarial attacks [41].

min
M

1

N

N∑
i=1

ReconstructionLoss(xi,M(xi))

+ λ · RegularizationTerm(Xadv,M)

(6)
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Fig. 5. Adversarial accuracy of all three IDS models against (a) FGSM and
(b) PGD attacks at various epsilon values, demonstrating an increase in model
resilience with GAN and adversarial augmentation.

The loss term is the discrepancy between the original sample
xi and the autoencoder’s output. Xadv is the adversarial
sample set, while RegularizationTerm(Xadv,M) evaluates the
autoencoder’s response to perturbations.

VIII. EVALUATION

Our research aimed to evaluate and strengthen the resilience
of a UAV IDS using GANs and adversarial learning. The goal
was to maintain high performance under all scenarios.

A. Research Questions and Evaluation Metrics

Our framework involves augmenting the resilience of IDS
against adversarial attacks by incorporating data from GANs
and adversarial learning. Hence, we have three IDS models
to evaluate the efficacy of our framework: the baseline IDS
(which we refer to as the vanilla IDS), the IDS with GAN-
data augmentation, and finally, the IDS incorporating adver-
sarial samples in the learning. This leads us to investigate
the following research questions (RQs). To experimentally
validate the performance of our framework and to answer
these questions, we make use of the following well-known
metrics: (1) Accuracy, the proportion of correctly classified
samples to the total number of samples; (2) False Positive
Rate, the proportion of negative samples incorrectly classified
as positive to the total number of negative samples; (3) Mean
Squared Error (MSE), the average of the squared differences
between the predicted values and the true values; and (4) R2
score, the proportion of the variance in the dependent variable
that the independent variables can explain.

RQ1: Can the proposed framework make the existing IDS
for UAVs resilient against different adversarial attacks?

RQ2: Is the integration of adversarial learning as a regu-
larization measure necessary to enhance the resilience of IDS
against adversarial attacks beyond what GAN data augmenta-
tion alone achieves?

RQ3: How do the distribution and central tendency of MSE
differ among the three models, and what does this reveal about
their comparative performance in the context of IDSs?

RQ4: How does adversarial augmentation affect the IDS’s
performance against actual GPS spoofing/jamming attacks?

RQ5: How do the stability and sensitivity of the models
vary with different perturbation magnitudes?
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Fig. 6. Comparative (a) detection rates under FGSM and PGD attacks, (b)
MSE values across all models, showing enhanced resilience against adversarial
attacks with the integration of GAN and adversarial learning.

B. Results and Discussion

To answer RQ1, we tested all three IDS models under
two adversarial attacks, FGSM and PGD, and recorded the
adversarial accuracy for a range of epsilon values. As shown
in Fig. 5(a) and Fig. 5(b), the adversarial accuracy for the
initial IDS model dropped significantly with the increase in
epsilon values for both the FGSM and PGD attacks. The
accuracy dipped to 0.016042 for FGSM and 0.220658 for PGD
attacks at epsilon values of 0.50 and 0.60, respectively. Upon
augmentation with GAN, there was a substantial increase in
the IDS model’s resilience against both FGSM and PGD
attacks. The adversarial accuracy of the GAN-augmented IDS
model remained well above 0.99 for both attack methods for
epsilon values up to 0.25. However, the adversarial accuracy
declined more noticeably for higher epsilon values, particu-
larly for FGSM attacks, falling to 0.244198 and 0.993354 at
an epsilon of 0.60 for FGSM and PGD attacks. Furthermore,
the adversarially regularized IDS model improved resilience
against adversarial attacks. The adversarial accuracy remained
notably stable across attack methods and all epsilon val-
ues, with a minimum accuracy of 0.691458 for FGSM and
0.993262 for PGD attacks at an epsilon of 0.50. These results
show that the proposed framework enhances the resilience
of the existing IDS for UAVs against adversarial attacks.
The GAN augmentation significantly boosts the adversarial
accuracy of the model. Still, including adversarial samples
as a regularization measure provides the most comprehensive
resilience, maintaining high accuracy even against stronger
adversarial attacks. Regarding RQ2, we wanted to determine if
integrating adversarial learning was necessary to enhance the
IDS resilience against adversarial attacks. The results seem to
support this hypothesis. As seen in Fig. 6(a), for the vanilla
IDS, the adversarial accuracy was notably low with FGSM
(0.261409) and somewhat better with PGD (0.626006). For
the GAN-augmented IDS, there was a significant improvement
in adversarial accuracy. GAN data augmentation alone led to
a detection rate of 0.994800 for PGD attacks, a significant
improvement. However, adding adversarial learning to GAN
data augmentation further increased FGSM attack detection
rates to 0.937810 and maintained a high PGD detection rate
of 0.993904. Thus, both strategies effectively bolster IDS
resilience against adversarial attacks. To answer RQ3, we
calculated the MSE for each model, analyzed their distribu-
tions, and observed the following results. The initial model
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Fig. 7. Comparative analysis of model performance in detecting (a)
GPS spoofing and (b) jamming attacks. These plots highlight the
improvements in accuracy and reductions in false positive rates.

had MSE values ranging approximately from 0.008927 to
0.007868. This suggests a moderately good fit of the model
to the data; however, there is still considerable room for
improvement. The GAN-augmented model improved perfor-
mance, with MSE values ranging from 0.006594 to 0.002299.
This demonstrates that adding GAN-augmented data led to
a better fit of the model to the data. The model trained with
GAN data augmentation and adversarial samples demonstrated
the best performance. MSE values were significantly lower,
approximately from 0.002309 to 0.002104. This indicates a
superior fit of the model to the data compared to the previous
two models. The lower MSE values in Fig. 6(b) show the
model’s effectiveness in reconstructing input data, highlighting
its resilience against adversarial attacks.

To address RQ4, we need to ensure that enhancing the
resilience of IDS does not come at the cost of an increased
false positive rate (FPR). Thus, we computed the performance
of the models in detecting GPS spoofing and jamming attacks.
For GPS spoofing attacks, as shown in Fig. 7(a), the baseline
IDS had an accuracy of 0.9476 and an FPR of 0.0523.
GAN augmentation improved this decent performance, where
accuracy significantly increased to 0.9845, and FPR reduced to
0.0154. This indicates that the GAN augmentation effectively
enhanced the model’s ability to identify GPS spoofing attacks
accurately. Finally, the IDS with both GAN augmentation and
adversarial learning achieved the best performance, with an ac-
curacy of 0.9957 and the lowest FPR of 0.0042. This highlights
the effectiveness of integrating GAN and adversarial learning
in improving IDS performance against spoofing attacks. For
GPS jamming attacks, as seen in Fig. 7(b), the accuracies of all
three models were quite high, ranging from 0.9942 to 0.9977.
Moreover, the models had low FPRs, with the last model
having the lowest value of 0.0023. The GAN-augmented and
adversarially trained models exhibit higher accuracy and lower
FPRS, making them more reliable for real-world applications.
In response to RQ5, we conducted a sensitivity analysis on
the three models to ascertain their stability and sensitivity
against different perturbation magnitudes. Key metrics utilized
for this analysis were MSE and R2 Score, with an increase
in MSE after perturbation indicating a performance decline,
while a decrease in R2 Score indicating a lesser fit of the
model to the perturbed data. Upon applying perturbations,
the vanilla IDS demonstrated a decline in performance, with
an increase in MSE from 0.0113 to 0.0138 and a decrease
in the R2 Score from 0.0865 to -0.008. This suggests a
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Fig. 8. Sensitivity analysis of all three models under different
perturbation magnitudes. Improved stability and resilience of the
models is seen as compared to the baseline model.

lack of stability and higher sensitivity to changes. The GAN-
augmented IDS also experienced an increase in MSE from
0.0054 to 0.0091, implying a decline in performance post-
perturbation. However, the R2 Score for this model was less
affected, with a change from 0.1744 to 0.0506, indicating that
this model was more resilient to perturbations than the baseline
model. The adversarially regularized IDS showed the best
performance, having the smallest increase in MSE from 0.0024
to 0.0074, and its R2 Score remained relatively stable, going
from 0.3344 to 0.0506. Fig. 8 shows that GAN augmentation
and adversarial samples enhance the IDS models’ stability
against various perturbation levels.

IX. CONCLUSION

In this work, we have highlighted the vulnerabilities of
current IDS for UAVs against GPS spoofing and jamming at-
tacks and proposed a framework using GANs and adversarial-
sample-based regularization. Under FGSM and PGD adver-
sarial attacks, the detection rates for our improved IDS are
93.78% and 99.39%, respectively, outperforming the baseline
rates of 26.14% and 62.6%. Additionally, our resilient IDS
demonstrated an accuracy of 99.57% against GPS spoofing,
substantially better than the conventional IDS accuracy of
94.76%. Importantly, the false positive rate was also reduced
to 0.42% compared to the previous 5.23%. This approach
enhances the IDS’s resilience, improves accuracy, reduces
false positives against spoofing/jamming attacks, and remains
robust against adversarial perturbations. In future research,
we will examine our framework’s suitability for adversarial
attacks on UAVs, explore techniques like deep reinforcement
learning, and study adaptability to other domains.
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