
FED-UP: Federated Deep Reinforcement
Learning-based UAV Path Planning against Hostile

Defense System
Alvi Ataur Khalil, and Mohammad Ashiqur Rahman

Analytics for Cyber Defense (ACyD) Lab, Florida International University, USA
akhal042@fiu.edu, marahman@fiu.edu

Abstract—In military operations, unmanned aerial vehicles
(UAVs) have been heavily utilized in recent years. However, due to
the antenna installment regulation, UAVs cannot be controlled by
human operators in a restricted area. Hence, artificial intelligence
(AI)-driven UAVs are the practical solution to this out-of-coverage
problem. With the increased use of autonomous UAVs in military
applications, defense systems are deployed to target and shoot
down the enemy UAVs in operation. Thus, UAVs are needed to
be trained, not only to achieve goals but also to avoid static
and dynamic hostile defense systems. In this work, we propose
FED-UP, a federated deep reinforcement learning (DRL)-based
UAV path planning framework, that enables UAVs to carry out
missions in a hostile environment with a dynamic defense system.
The federated learning (FL) based training accelerates the rein-
forcement learning process and improves model performance. We
additionally introduce significant reply memory buffer (SRMB)
to quicken the training process more, by selecting the crucial
experiences during the training period. The experimental results
validate the efficiency of the proposed model in controlling UAVs
in dynamic, hostile environments.

Index Terms—Federated Learning, Deep Reinforcement
Learning, Unmanned Aerial Vehicles, Path Planning

I. INTRODUCTION

Due to its low price, versatility, and compact size, the
unmanned aerial vehicle (UAV) has garnered considerable
interest in both military and civilian industries [1]. In most
of the real-world applications, UAVs must securely move
between multiple sites in order to carry out specific tasks. As a
result, a trustworthy and effective navigation system in diverse
environments is crucial for these UAV applications. Despite
tremendous progress in making UAV operation increasingly
autonomous, UAV path planning in dynamic situations is
still difficult since there is little time for it to avoid un-
foreseen flying obstructions like birds or other air-crafts [2].
Specifically, in military applications, where UAVs can not
be controlled by human operators, due to jamming [3] and
out-of-coverage issues, UAV path planning becomes an even
more sophisticated problem. The military hostile environments
include not only static defense systems like UAV fishing
towers (through means of collision), but also deploy the enemy
drones, that patrol through the environment. An efficient real-
time trajectory planning is needed to dodge the enemy defense
systems and complete various tasks in hostile environments.

In simple situations, the traditional path planning algorithms
are effective at avoiding obstacles. However, with complex

environments having dynamic obstacles, the traditional meth-
ods require recalculation to adjust for changes in the environ-
ment and completely fail when reassigning unknown goals.
The reinforcement learning (RL) techniques, however, can
adapt the paths almost immediately. In basic RL, an agent
manages a Q-table for each state-action pair, that is suitable
for simple small-scale environments (having a considerably
limited number of states). However, as the environment gets
sophisticated, resembling real-world hostile setups, Q-table
size gets exponentially larger, making it infeasible to utilize.

To counter the above mention limitations of existing path
planning solutions, we propose FED-UP, a Federated Deep
RL (DRL)-based UAV Path planning framework for real-
time UAV trajectory design in hostile environments with static
and dynamic defense systems. DRL offers exceptional feature
learning capabilities, allowing it to process complicated, high-
dimensional states and extract clear, useful feature information
from them. The federated learning (FL) helps to speed up the
exploration of the environment as the swarm UAVs parallelly
interact with diverse states of the environment. Even with
just one UAV of the swarm experiencing the goal comple-
tion and obstacle encounter, helps the training of the whole
swarm through aggregation at the global model. To further
accelerate the learning, we introduce significant reply memory
buffer (SRMB), which controls the batch samples used for
training the FED-UP model, prioritizing the significant state
experiences. In summary, our contributions are as follows:

• We design and implement FED-UP, a novel UAV trajec-
tory planning architecture for hostile environments.

• We introduce SRMB module for selective training of
FED-UP, to accelerate the intelligent behaviour learning.

• We evaluate the proposed FED-UP framework with re-
spect to goal completion, obstacle avoidance and trav-
eled distance. The evaluation results show that FED-UP
performs better than standard DRL, specially in dynamic
hostile environments.

We go over the preliminary information in Section II. Sec-
tion III discusses the related works. In Section IV we present
our proposed FED-UP framework. We go over the frameworks’
technical specifics in Section V. In Section VI, we explain
the evaluation setup and present the empirical analysis and
findings. Finally, we conclude the paper in Section VII.

EnvironmentQ Network
State

Target Network
C

op
y

ea
ch

N
 s

te
ps

Reply Memory
Buffer

Loss calculation of Q value

Action: (ARGmaxQ(
state,action|wights))

Store: (state,action,
reward,next state)

next state (state,
action)

reward

Q
(s

ta
te

,
ac

tio
n|

w
ig

ht
s)ARGmaxQ

(next state,
next action|
wightstarget) G

ra
di

en
t

w.
r.t

 lo
ss

Deep Reinforcement Learning

Fig. 1. Deep Reinforcement Learning Architecture.

II. BACKGROUND

This section presents some preliminary concepts that will
help explain the framework later.

A. UAV path-planning

Path planning is the process of determining the best route
between a source and a destination, and it is one of the most
critical problems that need to be investigated in the field of
UAVs. The primary goal of UAV path planning is to create a
cost-effective flight path that satisfies the UAV performance
criteria with a low chance of being destroyed during the
flight [4]. The basic path planning problem includes specific
routes to choose from for reaching the goal, while in the case
of UAVs, the problem is more sophisticated. The UAVs have
to plan a trajectory that is collision-free, at the same time,
cost-effective.

B. Deep Reinforcement Learning

A promising method for autonomously learning complicated
behaviors from limited sensor observations is DRL. Although
a significant portion of DRL research has concentrated on
video game applications and simulated control, which have
nothing to do with the constraints of learning in real envi-
ronments, DRL has also shown promise in making it possi-
ble for physical robots to learn complex skills in the real-
world. Consequently, as the real-world ties directly to how
a human learns, it becomes an ideal domain for evaluating
DRL algorithms [5]. Unlike the basic RL, where an agent
manages a Q-table, DRL agent maintains a neural network,
called Q-network as the learning mechanism. The Q-network
based learning can effectively perform exceptionally well in
real-world-based complex environments. The system diagram
of a DRL architecture is presented in Figure 1. For training
the Q-network, the agent’s experiences are saved as training
data samples into a storage called Reply Memory Buffer. To
provide stability to the action decision from the Q-network, an
additional supplemental neural network is added to the DRL
framework, called the target network. The weights from the Q-
network are copied to the target network after a certain number
of episode steps. The target network predicts the future Q-
values for the next states, which are used to calculate the loss
of the Q-network’s prediction.

Local Model
(Device 1)

Local Model
(Device 2)

Local Model
(Device N)

Weig
hts

1

W
ei

gh
ts

2

W
eightsN

G
lobal M

odel

 S
en

d
W

ei
gh

ts
gl

ob
al

Lo
ca

l M
od

el
 T

ra
in

in
g

Submit Weightslocal

Global Model
Aggregation and Update

1

3

4

2

Fig. 2. Federated Learning Architecture.

C. Federated Learning

Data and computation resources are now often dispersed
across end-user devices, different areas, or corporations. Laws
or regulations prevent the aggregated or direct sharing of
distributed data and computing resources among various areas
or organizations for machine learning tasks. FL is an effective
approach for utilizing distributed computing and data resources
to collaboratively train machine learning models. FL also
abides by the rules and regulations to ensure data security
and privacy [6]. The basic goal of FL is to do a collaborative
on-device training of a single machine learning model without
disclosing the raw training data to any other parties [7]. The
basic steps of an FL architecture is shown in Figure 2, where
the cloud server holds the global machine learning model to be
trained. In the first iteration, the random weights of the global
model is Sent to the end devices, each having a local model.
The end devices Train their respective local models with their
private data and then Submit the local model’s weight to
the global model. Finally, the global model Aggregates the
weights and Updates it’s weights. The updated global model’s
weights again Sent to the end devices, each of which Updates
their local models and Trains it with the private local data.
These steps are repeated till the end of iterations.

III. RELATED WORKS

With the advancement toward UAV utilization in military
operations, autonomous UAV control in a hostile environment
has become a very important research area. To mention
some of the recent works related to UAV trajectory design
in hostile environments, Han et al. proposed a satellite-
assisted UAV path planning in [3], where the satellite builds
a situational map of the hostile environment using the data
uploaded by the UAVs. Siemiatkowska et al. introduced a
mixed-integer linear programming (MILP) based framework
for UAV swarms mission in a hostile environment, where they
utilized EO/IR camera images and synthetic aperture radar
(SAR) based detection mechanism for potential dangerous
objects [8]. On the other hand, for maritime-based hostile
environments, Kim et al. proposed a social learning particle

Environment

L
oc

al
 M

od
el

Ve
rt

ic
al

 F
ed

er
at

ed
 D

ee
p

 R
ei

nf
or

ce
m

en
t L

ea
rn

in
g

A
ge

nt
 1

Observation(Agent1)

G
lo

ba
l M

od
el Action (Agent1)

Reward (Agent1)

L
oc

al
 M

od
el

A
ge

nt
 N

Observation(AgentN)

Action (AgentN)

Reward (AgentN)

Aggregator

Su
bm

it
(A

ge
nt

N
)

Su
bm

it
(A

ge
nt

2
to

 A
ge

nt
N

-1
)

Su
bm

it
(A

ge
nt

1)

U
pd

at
e

M
od

el

Send Updated
Model

Fig. 3. Proposed FED-UP framework.

swarm optimization approach in [9], for optimal operation
management of UAV swarms. For the deployment of UAVs in
a hostile environment, Han et al. proposed a congestion game
to model the interaction among the UAV swarms in [10], where
each UAV independently adjusts the location and realizes the
position control. Wen et al. proposed an online path planning
framework for UAVs hostile environment in [11], where they
model static threats based on an intuitionistic fuzzy set (A-
IFS) and dynamic threats based on a pursuit-evasion game.
All of these papers assumed the environment state is static
after the trajectory or deployment plan has been formulated.

RL-based UAV path planning solutions have become in-
creasingly popular due to their effectiveness in unknown
settings. Khalil et al. proposed a novel economic trading
based RL-framework for co-operative UAV path-planning in
non-dynamic environments [12]. Alpdemir et al. proposed a
comprehensive probabilistic radar behavior model environ-
ment that complies with MDP, as well as a framework that
combines a fundamental RL algorithm with a particular type of
transfer learning [13]. Papoudakis et al. evaluate and compare
three different classes of multi-agent DRL (MARL) algorithms
in [14], to establish the notion that the performance of DRL
strongly depends on the environment properties. In order to
successfully solve the issue of the DRL’s neural network’s
erroneous prediction at the early stage of training, Xie et al.
offered an action selection technique that combines the present
reward R value with the Q value [1]. Yan et al. introduced
a quick situation assessment approach in [15] that converts
sequential scenario maps of the global environmental states
into dynamic adversary threats. Wan et al. developed a motion
control framework based on actor-critic architecture that can
perform dual-channel roll and speed control by anticipating
the desired steering angle and analyzing the probability of a
collision [16]. The UAV can fly safely on its own in dynamic,
uncertain environments with the help of the controller. These
works, however, consider that the UAV agents have the global
observation of the dynamic obstacles to formulate a global

awareness, which hardly resembles the real-world hostile
environment. Consequently, we propose FED-UP framework
considering partial awareness of the environment, resembling
sensor-based observation of the UAVs. We experiment with
different levels of observation capability with the layer (L)
parameter, which is discussed in the later sections.

IV. FRAMEWORK

In this section, we introduce the proposed FED-UP frame-
work, which is presented in Figure 3. We specifically utilize
the vertical federated RL concept, as we are considering that
a collaborating swarm of UAVs deployed in the same environ-
ment together will simultaneously explore different states of
the environment. Each of the UAV agents will have its own
local RL model, which will be trained through K consecutive
episodes and reinitialized to replicate the global federated
model at the beginning of the next (K + 1)-th episode. The
observation vector size is exactly the same for all the agents,
and so is the action space. Each UAV agent will be deployed
at a different state in the three-dimensional environment, and
they will interact and explore the surrounding states. The
ϵ parameter (discussed later in Section V) will control the
exploring and exploitation behavior, which will be constant for
all the agents. Through the steps of an episode, the experiences
of the UAV agents will be stored in the respective memory
buffers of the agents (in our model, each agent has two
distinct memory buffers, discussed later in Section V). At
the end of each episode, the local Q-network of an agent is
trained with a random batch of experience tuples from the
memory buffer of the agent. The detailed structure of the
proposed DRL mechanism-based learning of an agent is shown
in Figure 5. The Q-network will be consulted for an agent’s
exploitation actions. At the end of each K episodes, the UAV
agents will submit the current weights of the respective Q-
networks to the vertical federated DRL (VF-DRL) module,
where an Aggregator module performs the weights and biases
aggregation from all the local models. The global model is

TABLE I
LIST OF NOTATIONS

Symbol Definition
S Set of states
s Current state
s’ Next state
A Set of actions
R Reward function
r Current reward
L Agent’s observable number of layers
K FL model update interval (episodes)
N Target model update interval (steps)
B Batch size of Q-network training samples
T Transition probability
π Policy
ϵ Exploration parameter
γ Discount factor
ϕ Sorting parameter
σ Sampling rate
δ ϕ value increment interval

updated with the aggregated weights and biases, and later
sent to each of the UAV agents, when the (K +1)-th episode
begins. The structure of the global model is exactly identical
to the local models. The vertical nature of the FL drives
the exploration faster. This accelerates the training process of
the global model and helps in further improving the model
performance in a relatively less number of episodes. Table I
contains the definition of the notation, which are utilized in
the modeling of the framework.

V. TECHNICAL DETAILS

In this section, we discuss the formulation of the path-
planning in a hostile environment problem and the Markov
Decision Process (MDP)-based design of the DRL solution.
Then, we introduce the SRMB concept to accelerate the
learning of the agents. Later, we discuss the VF-DRL module
in detail. Finally, we discuss the hostile defense systems.

A. Modeling DRL-based Path Planning

We model the problem as a Markov game, which is the
generalization of MDP. Generally, DRL MDP is a five-tuple,
consisting of the states, actions, transition probability, reward,
and discount factor. However, we modeled a further sophis-
ticated MDP for the complex hostile environment we are
considering in this work. Formally our MDP can be presented
by a nine-tuple: {S, A, T, R, π, ϵ, γ, ϕ, σ}. We will discuss
each element of the tuple in the subsequent sections:

1) States (S): The set of states represent all the possible
observation an agent can have in the environment. In our
case, as we are considering partially observable MDP, the
agents’ observation at a particular time step includes one/more
layers of cubes around the agent. To be more specific, if the
number of layers is one, that means there is one layer of cubes
around the agent, which results in twenty-seven cubes. This
concept effectively simulates the agents’ partial view of the
whole environment. It also lets the agent to be prepared when
there is an obstacle or goal nearby. It can effectively observe
the point of interest if the point has reached the surrounding
layers. We also assume the goal locations are known to the

agent at the start of the episode, so agents can plan the
trajectory towards the goals while dodging the obstacles in
real-time. Consequently, the observation also includes the three
coordinate distances from the goals.

2) Actions (A): The set of actions represent the activity an
agent can perform to interact with the environment. As we are
considering a discrete environment with cubes, the movements
are also discrete (and not continuous angular movement). So
there are eleven actions an agent can perform, which include
going up, going down, going forward, going backward, going
left, going right, going diagonally in four directions, and no
movement (hovering).

3) Transition (T): Transition probability represents the
probability of transitioning from one state to another state.
In our model, the probability is dependent on the current state
and the L number of previous states, where L is the number of
surrounding layers (observable by the agent) chosen for that
environment. That is because the agent has knowledge of the
surrounding L cubes to perform a suitable action.

4) Reward (R): The rewards define the reward function
that dictates the agent’s learning process. The reaching of
goal points awards the agent rewards while ending up on
an obstacle penalizes the agent. Again, there is a movement
penalty for each action taken that does not make the agent
reach a goal or obstacle location.

5) Policy (π): Policy is the learning of agents, by inter-
acting and exploring the environment; that is, which action
an agent will take, given a particular state. In our case, it is
simply the Q-network’s weight and biases that determine the
action an agent will take for a given observation of the state.

6) Exploration Parameter (ϵ): The exploration parameter
controls the action behavior of the agent. It is primarily
set close to 1, which means that there is an almost certain
probability that the agent will take random actions to interact
with the environment as exploration behavior. Those actions
will shape the learning of the Q-network. As the episode
progresses with additional steps, the ϵ value is decreased, so is
the probability of random action. The less the value of ϵ, the
more the probability that the agent will perform a action by
consulting the Q-network, which is the exploitation behavior.

7) Discount Factor (γ): The discount factor determines the
RL agents’ level of concern about rewards in the distant future
in comparison to those in the near future. The value of this
parameter ranges from zero to one. The agent will only learn
about actions that result in an immediate reward if γ is set
to zero, making it fully myopic. A reward R in future, that
occurs after N steps, will be discounted by a factor of N (i.e.,
the reward will be RN).

8) Sorting Parameter (ϕ): This parameter controls the
insertion of the experiences into the SRMB. The value of this
parameter is set from 0 to 1, where a zero value means only
the experiences where an agent ends up on a goal/obstacle
are stored in SRMB, while none of the layer encounters are
considered significant. The value can be incremented to one
in L steps, where L is the number of layers. Let, δ represents

(a) (b)
Fig. 4. The simulated three dimensional environment for a random episode,
(a) From x-y-z axis perspective, (b) From nearly x-y axis perspective. In these
figures, the blue towers are the static defense system and the red spheres are
the dynamic hostile defense system. The green diamonds represent the goals.

one increment for the ϕ value, then δ can be calculated using
the following equation:

δ =
ϕmax - ϕmin

L
(1)

Here, ϕmax and ϕmin are set to 1 and 0, respectively. The
first increment from zero means the experiences where a
goal/obstacle is encountered in the first neighboring layers
are stored, while the final increment up to one means all the
experiences where a goal/obstacle is even in the most distant
surrounding layer are stored.

9) Sampling Rate (σ): This parameter controls the sam-
pling rate of the experience memories, which are selected
for batch-wise training of the Q-Network. This parameter can
take values from 0 to 1, where 0 means all the samples of
the training batch are taken from the general Reply Memory
Buffer, and 1 means all the samples of the training batch are
taken from the SRMB. We experiment with different values
of σ to present the effect of the SRMB on the performance of
FED-UP model.

B. Selective Training with SRMB

In this section, we introduce the proposed SRMB concept,
that will aid the training of the Q-network in a faster way.
Generally, in the case of DRL, as discussed in Section II,
the Q-network’s training data is simply the experience tuples
from the RL agent’s exploration. In each time step, the agent’s
current state, current action, current reward, next state, and
completion flag (indicating goal completion state) are stored
into a memory buffer as a single tuple. The reply memory
buffer has a predefined memory size. As an episode terminates,
a random batch of tuples are selected from the memory
buffer to train the Q-network. However, this randomization can
hardly ensure that the Q-network is served with the memory
samples that will aid the learning of intelligent behavior. So
we are proposing SRMB, which will help to train the model in
a controllable manner by storing the most significant memory
tuples. Each agent will have both the Reply Memory Buffer
and the SRMB, where the sampling technique (with parameter
sampling rate, σ) and sorter (with sorting parameter, ϕ) will
control the effect of SRMB. The function and properties of
σ and ϕ are already discussed in the previous section. Figure

EnvironmentState

C
op

y
ea

ch
N

 s
te

ps

Loss calculation of Q value

Action: (ARGmaxQ
(state,action|wights))

Store: (state,action,
reward,next state)

next state (state,
action)

reward

Q
(s

ta
te

,
ac

tio
n|

w
ig

ht
s)ARGmaxQ

(next state,
next action|
wightstarget) G

ra
di

en
t

w.
r.t

 lo
ss

Deep Reinforcement Learning with Selective Training

Sorter (φ)

Significant Reply
Memory Buffer

(SRMB)
Reply Memory

Buffer

Sampling
Technique (σ)

Q
 N

et
w

or
k

Ta
rg

et
N

et
w

or
k

Fig. 5. Improved Deep Reinforcement Learning Architecture with SRMB.

5 presents the block diagram of the improved DRL training
with SRMB.

Sorter: Unlike the general DRL, where the reply memory
buffer directly receives the memory tuples, in our case the
sorter receives all the memories. Then it sorts the memories
into SRMB according to ϕ parameter. Whichever memories
are not stored in the SRMB are sent to the Reply Memory
Buffer for storing.

Sampling Technique: This module is responsible for prepar-
ing the batch samples for Q-network training. According to
the sampling rate parameter, this module takes B×σ samples
from the SRMB, where B is the size of a single training batch.
Consequently, the rest B× (1−σ) samples are taken from the
Reply Memory Buffer.

C. Federated Learning for Swarm Intelligence

The FL technique is primarily utilized for training a ma-
chine model from distributed data sources while maintaining
data security. We found that the inherit distributed learning
structure of FL boosts the performance of the swarm-based
learning models, as the global model gets fitted with all the
diverse experiences from different swarm agents. Similar to
the standard FL, the proposed vertical FL happens in four
repeating steps (presented in Figure 2). At the beginning of the
first episode, a global model is initialized with random weights
and biases, and sent to all the agents. Then agents initialize
their local Q-network model with the received weights and
biases. After each K episodes, the agents submit their current
Q-network’s weights and biases to the VF-DRL module,
where an aggregator model is responsible for processing the
received network models. We experiment with three different
aggregation algorithms, which will be discussed later in this
section. The global model is then updated with the aggregated
weights and biases. Finally, the global model is sent again to
all the agents at the beginning of (K + 1)-th episode, and
the agents update their local Q-network copying the weights

and biases received from the VF-DRL module. Now, we will
briefly introduce and discuss the three aggregation algorithms
we experimented with:

• FedSGD: In federated stochastic gradient descent [17],
a random portion of the swarm UAVs are selected by
the aggregator, and their local Q-networks’ gradients are
averaged and utilized to create a gradient descent step for
the global model.

• FedAvg: In the federated averaging [18] technique, the
aggregator averages the weights and biases of all the local
Q-network models from the agents to update the global
model.

• FedMA: In the federated match averaging [19] technique,
the layers are processed separately by the aggregator,
where only the nodes with comparable weights are
merged, and the global model’s nodes are updated.

We experiment with all three algorithms in order to decide
on the appropriate one for this application. After observing the
average reward value of 2000 episodes, the FedAvg algorithm
was found to be the most fitting option for this application.
All the experiments (discussed in Section VI) are performed
having FedAvg as the aggregation algorithm.

D. Modeling of Hostile Defense System

For designing an environment with a hostile defense setup,
we introduced three types of defense systems:

1) Static Defense System (SDS): These defense systems are
simulated by designing static towers with different heights at
different locations in the environment. In Figure 4, the blue
towers represent these defense systems.

2) Dynamic Fixed Route Defense System (DFRDS): These
defense systems are simulated by objects moving back and
forth in the environment in a fixed route. There are three kinds
of routes: horizontal movement with variable x-axis values and
fixed y-z axis values, horizontal movement with variable y-axis
values and fixed x-z axis values, and vertical movement with
variable z-axis values and fixed x-y axis values. In Figure 4,
the red spheres represent these defense systems. This defense
system resembles guarding UAVs.

3) Dynamic Stochastic Defense System (DSDS): These de-
fense systems are simulated by objects moving randomly in the
environment, without any fixed route or path. In Figure 4, the
red spheres represent these defense systems too. This defense
system resembles surveying and exploring UAVs.

VI. EXPERIMENTAL ANALYSIS

In this section, first, we introduce the different evaluation
metrics utilized to validate the performance of the FED-UP.
Then, we evaluate and analyze the framework’s performance
with respect to the metrics introduced.

A. Evaluation Metrics

This section defines the three metrics used for evaluating
the performance of FED-UP framework.

0 250 500 750 1000 1250 1500 1750 2000
Episode Number

0

20

40

60

80

100

Av
g.

 G
C

P
(5

0
Ite

ra
tio

ns
)

Environment with only SDS

DRL
SRMB-DRL
FeD-UP

(a)

0 250 500 750 1000 1250 1500 1750 2000
Episode Number

0

20

40

60

80

100

Av
g.

 G
C

P
(5

0
Ite

ra
tio

ns
)

Environment with SDS, DFRDS and DSDS

DRL
SRMB-DRL
FeD-UP

(b)
Fig. 6. Average GCP from 50 iterations by the UAV swarms, with DRL,
SRMB-DRL, and FED-UP, having (a) only SDS obstacles in the environ-
ment, and (b) having SDS, DFRDS, and DSDS obstacles in the environment.

SDS DFRDS DSDS
0

1

2

3

4

5

6

7

8

AD
T

(in
 1

0k
 3

D
 g

rid
 u

ni
ts

)

After 1000 Trainnig Epiosdes

DRL
SRMB-DRL
FeD-UP

(a)

SDS DFRDS DSDS
0

1

2

3

4

5

6

7

8

AD
T

(in
 1

0k
 3

D
 g

rid
 u

ni
ts

)

After 2000 Trainnig Epiosdes

DRL
SRMB-DRL
FeD-UP

(b)
Fig. 7. ADT of the UAV agents, during training with DRL, SRMB-DRL, and
FED-UP, after (a) 1000 episodes, and (b) 2000 episodes, with environment
with SDS, DFRDS and DSDS.

Goal Completion Percentage (GCP): This metric defines
what percentage of goal set has been visited or processed.
As a result, the GCP can be described as follows:

GCP =
of goals completed

of total goals in the goal set
× 100

Obstacles Encounter Count (OEC): This metric defines how
many times hostile entities has been encounter. This is the
summation of total hostile encounter. OEC can be defined as:

OEC =
∑

i∈Agents

counti

Here, counti is the number of times i-th agent has encountered
an obstacle, and Agents refers to the set of all agents.
Average Distance Travelled (ADT): This metric defines
the average amount of distance the agents have to travel to
reach their goal points. Ideally, the smaller the ADT, the
more efficient the path planning technique. ADT is defined
as follows:

ADT =
1

size(Agents)

∑
i∈Agents

di

Here, di is the distance that i-th agent had to travel to complete
its goal set, and Agents refers to the set of all agents.
B. Evaluating the Performance of FED-UP

In this section, we evaluate the performance of FED-UP
framework, by presenting a comparative analysis with DRL
and SRMB-DRL (DRL with SRMB, but no FL) with respect
to the metrics discussed in the previous section.

1) Goal completion capability in different hostile setups:
In this part, we discuss the average GCP of agent swarms
with different learning techniques, in environments with pro-
gressively higher difficulty, as presented in Figure 6. From
Figure 6(a), it is seen that with only static obstacles, all

0 200 400 600 800 1000
Episode Number

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
Av

g.
 O

EC
 (5

0
Ite

ra
tio

ns
)

Environment with only SDS

DRL
SRMB-DRL
FeD-UP

(a)

0 200 400 600 800 1000
Episode Number

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Av
g.

 O
EC

 (5
0

Ite
ra

tio
ns

)

Environment with SDS, DFRDS and DSDS

DRL
SRMB-DRL
FeD-UP

(b)
Fig. 8. Average OEC from 50 iterations by the UAV swarm, with DRL,
SRMB-DRL, and FED-UP, having (a) only SDS obstacles in the environ-
ment, and (b) having SDS, DFRDS, and DSDS obstacles in the environment.

the techniques perform almost similarly. However, as the
dynamic obstacles are introduced in the environment (in Fig-
ure 6(b)), there arises visible performance differences among
the methods. Although the average GCP goes down for all the
methods, FED-UP performs substantially better than SRMB-
DRL and DRL (completing around 80% goals). The SRMB-
DRL technique, even without FL, does perform better than the
standard DRL method, completing around 60% goals in the
dynamic environment.

2) Optimal travel distance in different hostile environments:
Figure 7 presents the ADT of the UAV swarms, being trained
with different methods. With 1000 training episodes, it is
observed in Figure 7(a) that FED-UP agents require minimal
distance to be traveled to complete the goal set in every
kind of hostile setup. Then, in Figure 7(b) we see SRMB-
DRL improves the most and gets close to the performance
of FED-UP (around 25k 3D grid units), while there is little
improvement in the latter. This is because the training per-
formance of FED-UP with respect to ADT becomes saturated
after 1000 episodes. Even after 2000 episodes, there is minimal
improvement observed for the standard DRL.

3) Obstacle avoidance capability in different hostile setups:
In this part, we evaluate the FED-UP framework with respect to
the OEC performance in progressively harder hostile environ-
ments (Figure 8). With only SDS, FED-UP performed substan-
tially better than both DRL and SRMB-DRL, as presented in
Figure 8(a). However, as the dynamic obstacles are introduced
in the environment (Figure 8(b)), the performance of SRMB-
DRL becomes comparable to FED-UP. That is because both of
the techniques utilize the SRMB, while the slight advantage
for the FED-UP comes from the VF-DRL module. The overall
performance of both methods degrades with a tougher hostile
environment.

VII. CONCLUSION

In this work, we present an FL-based improved DRL
method for UAV path planning in hostile environments with
static and dynamic defense systems. Our evaluation results
have shown that the proposed FED-UP model outperforms
the standard DRL method in both the simplistic environment
setup (only SDS) and complex environment setups (with
DFRDS and DSDS). We observe that the proposed model
training is remarkably faster than DRL in terms of training
episodes. Moreover, there is a significant improvement in

performance in terms of obstacles avoidance (68% less OEC
with dynamic defense), goal completion (113% greater GCP
with dynamic defense), and minimizing travel distance (57%
less ADT with dynamic defense). In our future work, we will
focus on further optimizing the SRMB and VF-DRL modules
and experiment with even more sophisticated defense systems
(including tracker and follower UAVs).

REFERENCES

[1] R. Xie, Z. Meng, L. Wang, H. Li, K. Wang, and Z. Wu, “Unmanned
aerial vehicle path planning algorithm based on deep reinforcement
learning in large-scale and dynamic environments,” IEEE Access, vol. 9,
pp. 24 884–24 900, 2021.

[2] Z. Ma, C. Wang, Y. Niu, X. Wang, and L. Shen, “A saliency-based
reinforcement learning approach for a uav to avoid flying obstacles,”
Robotics and Autonomous Systems, vol. 100, pp. 108–118, 2018.

[3] C. Han, A. Liu, K. An, H. Wang, G. Zheng, S. Chatzinotas, L. Huo, and
X. Tong, “Satellite-assisted uav trajectory control in hostile jamming
environments,” IEEE Transactions on Vehicular Technology, vol. 71,
no. 4, pp. 3760–3775, 2021.

[4] S. Aggarwal and N. Kumar, “Path planning techniques for unmanned
aerial vehicles: A review, solutions, and challenges,” Computer Commu-
nications, vol. 149, pp. 270–299, 2020.

[5] J. Ibarz, J. Tan, C. Finn, M. Kalakrishnan, P. Pastor, and S. Levine,
“How to train your robot with deep reinforcement learning: lessons we
have learned,” The International Journal of Robotics Research, vol. 40,
no. 4-5, pp. 698–721, 2021.

[6] J. Liu, J. Huang, Y. Zhou, X. Li, S. Ji, H. Xiong, and D. Dou,
“From distributed machine learning to federated learning: A survey,”
Knowledge and Information Systems, pp. 1–33, 2022.

[7] O. A. Wahab, A. Mourad, H. Otrok, and T. Taleb, “Federated machine
learning: Survey, multi-level classification, desirable criteria and future
directions in communication and networking systems,” IEEE Communi-
cations Surveys & Tutorials, vol. 23, no. 2, pp. 1342–1397, 2021.

[8] B. Siemiatkowska and W. Stecz, “A framework for planning and
execution of drone swarm missions in a hostile environment,” Sensors,
vol. 21, no. 12, p. 4150, 2021.

[9] J. Kim, H. Oh, B. Yu, and S. Kim, “Optimal task assignment for
uav swarm operations in hostile environments,” International Journal
of Aeronautical and Space Sciences, vol. 22, no. 2, pp. 456–467, 2021.

[10] C. Han, A. Liu, K. An, G. Zheng, and X. Tong, “Distributed uav
deployment in hostile environment: A game-theoretic approach,” IEEE
Wireless Communications Letters, vol. 11, no. 1, pp. 126–130, 2021.

[11] N. Wen, X. Su, P. Ma, L. Zhao, and Y. Zhang, “Online uav path planning
in uncertain and hostile environments,” International journal of machine
learning and cybernetics, vol. 8, no. 2, pp. 469–487, 2017.

[12] A. A. Khalil, A. J. Byrne, M. A. Rahman, and M. H. Manshaei, “Re-
planner: Efficient uav trajectory-planning using economic reinforcement
learning,” in 2021 IEEE International Conference on Smart Computing
(SMARTCOMP). IEEE, 2021, pp. 153–160.

[13] M. N. Alpdemir, “Tactical uav path optimization under radar threat
using deep reinforcement learning,” Neural Computing and Applications,
vol. 34, no. 7, pp. 5649–5664, 2022.

[14] G. Papoudakis, F. Christianos, L. Schäfer, and S. V. Albrecht, “Compar-
ative evaluation of cooperative multi-agent deep reinforcement learning
algorithms,” arXiv: 2006.07869, 2020.

[15] C. Yan, X. Xiang, and C. Wang, “Towards real-time path planning
through deep reinforcement learning for a uav in dynamic environ-
ments,” Journal of Intelligent & Robotic Systems, 2020.

[16] K. Wan, X. Gao, Z. Hu, and G. Wu, “Robust motion control for uav
in dynamic uncertain environments using deep reinforcement learning,”
Remote sensing, vol. 12, no. 4, p. 640, 2020.

[17] H. Yuan and T. Ma, “Federated accelerated stochastic gradient descent,”
Advances in Neural Information Processing Systems, vol. 33, pp. 5332–
5344, 2020.

[18] S. Ek, F. Portet, P. Lalanda, and G. Vega, “Evaluation of federated learn-
ing aggregation algorithms: application to human activity recognition,”
in 2020 ACM International Symposium on Wearable Computers, 2020.

[19] H. Wang, M. Yurochkin, Y. Sun, D. Papailiopoulos, and Y. Khaz-
aeni, “Federated learning with matched averaging,” arXiv preprint
arXiv:2002.06440, 2020.

