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Abstract—Modern building control systems integrate the in-
ternet of things (IoT) for real-time monitoring of the building’s
demand and manage the heating, ventilation, and air conditioning
(HVAC) cost-efficiently and reliably. However, adversarial alter-
ations of the sensor data can disrupt the occupants’ comfort or
increase energy consumption. Several intrusion detection systems
(IDSs) are proposed to detect the tempering of the sensor
measurements. However, these approaches either demonstrate a
high false alarm rate or fail to detect anomalies, putting the
HVAC control or the building occupants in a vulnerable condi-
tion. This paper proposes a novel intrusion detection technique
amalgamating two unsupervised machine learning techniques,
namely autoencoder(AE) and one-class support vector machine
(OCSVM), for identifying abnormality in smart building sensor
measurements. Our experimental analysis shows that the AE
model-based anomaly detector demonstrates satisfactory perfor-
mance for lowering false alarms but fails to detect a number
of anomalous samples. In contrast, the OCSVM-based anomaly
detection model performs significantly well for anomaly detection
while raises a lot of false alarms. Our proposed ensembled AE-
OCSVM model combines both models’ benefits, resulting in
significant reductions of false positive and false negative rates
compared to the existing smart building IDSs. We evaluate
the proposed intrusion detection system on the commercial
occupancy dataset (COD) and find that the proposed IDS model
can achieve a 99.6% F1-score.

Index Terms—Machine learning, unsupervised learning, intru-
sion detection

I. INTRODUCTION

Internet of things-enabled smart building control systems
contributes towards utility cost reduction, effectiveness im-
provement, better prediction-based maintenance, and resource
utilization for a wide range of control loops like Heating,
Ventilation, and Cooling (HVAC) control, smart lighting or
window control, audio or visual control, etc. [1]. The HVAC
control system accounts for 40% to 70% energy of the smart
building operational cost [2]. Ensuring comfort for the building
occupants by maintaining the indoor air quality (IAQ) and
keeping the temperature in the satisfactory range is the smart
building HVAC control system’s key responsibility.

Cyberattacks are now more common and in smart building
control systems. At the beginning of 2019, Kaspersky analyzed
around 40 thousand buildings and reported that more than
one-third of the computers associated with smart building
control and automation system is infected with malware [3].
This malware is mainly used to steal information from the
building. Using that information, adversaries can inject cal-

culated measurements in the HVAC control sensor devices to
compromise occupants’ comfort or increase building energy
consumption expenditure. Current researches have found that
almost 8000 HVAC control devices are vulnerable to various
cyberattacks [4]. Novel zero-day attacks are being launched
due to the computational advances and rise of wireless
network-connected IoT devices [5]. For instance, Zhu et al.
demonstrated the feasibility of a passive attack for stealing
occupancy information in a specific zone of a building when
there is at least one IoT device in each zone [6]. A detail
analysis of security, privacy and threats have been analyzed
and explored by recent researches [7], [8]. Current researches
propose different IDS models for detecting attacks in the con-
trol system. But the main limitations of the approaches include
a high false alarm rate and massive computational requirement,
making it infeasible for real-time implementation.

In our work, we propose an unsupervised machine learning-
based IDS that ensembles autoencoder (AE) and one-class
SVM (OCSVM). For evaluating our work, we train our IDS
with benign samples collected from the commercial occupancy
dataset (COD) [9]. We generate several attack samples by
injecting false data in the sensor measurements and com-
pared our IDS performance based on correctly identifying
benign and anomalous samples. For generating the attack
vectors, we mathematically model an HVAC control system
based on American Society of Heating, Refrigerating and Air-
Conditioning Engineers (ASHRAE) standards, mass balance,
and energy balance equations [10], [11]. The attacks were
developed considering cost increment and comfort disruption
goals. The evaluation result shows that our proposed IDS can
detect almost all attacks, although it was not trained on any of
them. The ensembled OCSVM and AE model shows a lot less
false positive and false negative predictions than the individual
learners. To the best of our knowledge, this the only research
attempt to ensemble AE and OCSVM models for constructing
IDS. In summary, the contribution of this paper is as follows:

• We mathematically model smart building HVAC control
system and generate an attack dataset considering stealthy
data injection attacks.

• We propose an IDS based on the ensemble of OCSVM
and AE techniques for efficient detection of corrupted or
tampered data in smart building HVAC control systems.

• We extensively evaluate the performance of our proposed
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Fig. 1. A schematic diagram of a smart building HVAC control system.

IDS and compare its performance with non-ensemble-
based IDSs.

The rest of the paper is organized as follows: we provide
an overview and mathematical modeling of the smart build-
ing HVAC control system in Section III. For evaluating the
system, we generate a set of attack data. The attack model is
described in Section IV. We present the technical details of
the proposed IDS in Section V. Two example case studies are
discussed in Section VI for better understand the proposed
IDS model. Then, we evaluate our proposed IDS model by
running experiments on a state-of-the-art dataset and present
the results in Section VII. Finally, we conclude the paper in
Section VIII.

II. RELATED WORKS

For detecting the sensor measurement manipulation, several
researchers proposed different schemes for intrusion detec-
tion systems (IDS) to find anomalies in the smart building
control system. For example, Pan et al. proposed a context-
aware building automation and control network (BACnet) data
structure based IDS, which does not perform well for reducing
false-positive alarms [12]. Some research approaches gener-
ated rule-based IDS. Luo et al. came up with a lightweight
rule-based IDS framework of smart building control sys-
tem [13]. The drawback of the IDS is that it is dependent on
attack samples and is susceptible to misclassifying zero-day
attacks.

Current researches focus on unsupervised learning-based
IDS models to deal with novel zero-day attacks. Liu et al.
proposed a long short-term memory (LSTM) encoder-decoder
for detecting context and point anomaly in industrial climate
control [14]. The false-positive rate of the proposed model
is very high ( 13%). Gardner et al. applied an OCSVM-
based novelty detection framework for detecting Intracranial
EEG seizures. They haven’t got good results for false-positive
cases as well [15]. Jaikumar et al. presented an unsupervised

learning strategy for multi-modal sensor data anomaly detec-
tion [16]. But the LSTM model-based IDS does not show
satisfactory results in the case of fewer training samples or
lack of time-series correlation of training features. Araya et
al. proposed a generic collective contextual anomaly detection
(CCAD) framework using a sliding window approach and con-
structed an AE-based IDS model to learn normal consumption
patterns [17]. But they also obtained an abysmal performance
in the case of false-positive rate.

Some researchers adopted ensemble learning strategies for
IDS development in supervised and unsupervised learning
settings to obtain improved performance [18]. Perdisci et
al. [19] constructed an OCSVM-based ensembled classifier
for detecting anomalies in payload-based system. Garg et al.
proposed a meta-heuristic clustering approach, an ensemble
of Artificial Bee colony-based IDS for multi-class dataset
anomaly detection [20]. But their approach is dependent on
the availability of attack data. Zhang et al.proposed a two-
level unsupervised ensemble learning strategy, where the first
level is used to reduce the loss of information, and the second
level is used to improve the generalization ability [21]. Some
other researches also came up with unique IDS solutions.
Newaz et al. proposed a novel IDS on personalized medical
device communication using n-gram approach [22]. Shahriar
et al. proposed a generative adversarial network (GAN)-based
approach to generate a synthetic attack dataset from the
existing attack data [23]. But their IDS was dependent on
learning known attack pattern. Chan et al. proposed an neural
network-based ensemble technique for novelty detection [24].

Although these approaches helped design more accurate
learners for anomaly/ intrusion detection, they recognize many
benign samples as an anomaly. Hence, we are interested in
ensembling different learning models together to combine their
positive features.

III. SMART BUILDING HVAC CONTROL SYSTEM

This section provides a brief description of the smart
building HVAC control architecture with mathematical model
representation. Fig. 1 shows the smart building HVAC control
schematic diagram with two rooms, where the left room is
responsible for operation and maintenance, the right one is a
normal office room.

A. Control Algorithms

Maintaining good indoor air quality (IAQ) by lowering the
amount of CO2 and other volatile organic gas is one of the key
responsibilities of HVAC control systems [25]. Fresh air from
outside needs to be injected inside the building to keep IAQ
in an acceptable range. Again, the HVAC control system also
accounts for maintaining the indoor temperature in occupants’
comfort range. In real life, temperature and CO2 dynamics
are intricate, as there are many variants. For maintaining good
IAQ and temperature, modern smart building HVAC control
system adopts model predictive control-based strategy. But
mass balance equation for CO2 control and energy balance
equation for temperature control shows good performance in



HVAC control when building properties and the exact number
of occupants are known [11].

At a particular timeslot in a particular zone, volumetric
airflow from the supply fan can be calculated using the
following equation:

Mocc ×OccCO2 ×∆t

ZoneV ol
= setCO2 −

(
1− AirV ol ×∆t

ZoneV ol

)
MCO2

− AirV ol ×∆t

ZoneV ol
MixedCO2

(1)

where,
Mocc = Occupant sensor measurements (person)
OccCO2 = CO2 emission per occupant in the considered zone
(ft3min−1)
MCO2 = CO2 sensor measurements (ppm)
setCO2 = CO2 setpoint (ppm)
AirV ol = Volumetric airflow of mixed air inn the considered
zone (ft3min−1)
ZoneV ol = Volume of the considered zone (ft3)
∆t = Difference between two timeslots (min)
MixedCO2 = CO2 concentration of mixed air (ppm).

Temperature dynamics follows the energy balance equation
as follows:

AirMass ×MixedSH(setTemp − supplyTemp) =

LoadEnergy +MoccOccEnergy
(2)

where,
AirMass= Mass airflow in the zone (kgs−1)
MixedSH= Specific heat of mixed air (Jkg−1K−1)
setTemp= Temperature setpoint of supply air (F )
supplyTemp= Temperature of supply air (F )
LoadTemp= Cooling or heating energy radiation or absorption
from loads (kW )
OccTemp =Cooling or heating energy radiation or absorption
from occupants (kW )

Supply air temperature varies based on the weather condi-
tion as demonstrated in the equation below.

55 (Cooling) ≤ supplyTemp ≤ 90 (Heating) (3)

B. Cost Calculation

The cooling or heating cost calculation relies on the mixing
of fresh outdoor air and indoor recirculated air. The deviation
of the temperature of mixed air and supply air introduces cost
in the HVAC control system. Mixed air needs to chill or be
heated to reach the desired supply air temperature, which is
performed by the high-speed flow of water in the coils. After
cooling or heating, the temperature of coil water gets changed,
which again needs to chill or be heated.

For determining the psychrometric values, six co-efficient
values are needed according to ASHRAE standard (σ0 = -
5800.22, σ1= 1.39, σ2 = -0.049, σ3 = 4.17 ×10−5, σ4 = -1.44
×10−8, σ5 = 6.54). The psypy library is used to calculate and
extract necessary psychrometric parameters from temperature
and relative humidity [26].

Calculating Partial pressure of water is needed to determine
specific heat, specific volume, and enthalpy of the supply and
mixed air.

MixedPP = exp(

4∑
i=0

(σiMixedTemp)(i−1)+

σ5loge(MixedHum))MixedSH

(4)

where,
MixedPP = Partial Pressure of water for mixed (Pa)
MixedHum = Humidity of mixed air (%)
MixedSH = Specific heat for mixed air (Jkg−1K−1). The
above equation can be used to determine the partial pressure
of supply air, SupplyPP . Specific heat of the water for mixed
air can be calculated using the following equation.

MixedSH =
0.621945×MixedPP

P −MixedPP
(5)

where,
P = Atmospheric pressure (Pa).

Similarly, we can find the specific heat of the water for sup-
ply air, SupplySH . Enthalpy of mixed air can be determined
by the following equation:

MixedEth =1.006×MixedTemp+

MixedSH × (2501 + 1.86×MixedTemp)
(6)

Similarly, enthalpy of supply air, SupplyEth can be measured.
The specific volume of mixed air is used to calculate the

volumetric flow of air simply by dividing mass flow rate by
specific volume.

MixedSV =287.042×MixedTemp

× 1 + 1.607858×MixedSH

P

(7)

The mass flow of air in the condenser can be derived from
the specific heat of mixed and supply air and mixed air flow
rate.

CondMass = AirMass × (MixedSH − SupplySH) (8)

The mass flow rate of condenser air can determine the heat
energy required to chill the hot air mixed to supply air setpoint
temperature.

CostCoil = MixedMass × (SupplyEth −MixedEth)+

CondMass × CondEth

(9)

But for chilling the mixed air, the temperature of the
coil refrigerant rises above the required temperature, and
the temperature rise can be calculated using the following
mathematical representation.

CoilTemp = SetCoil +
CostCoil

CoilMass ×WaterSH
(10)

Hence, the refrigerants are passed to the chiller for cooling
it back to the normal temperature, which also adds cost to the



system. This cost associated with the chiller cooling accounts
for a similar amount of energy that was required in the coil
cooling.

CostChil = CoilMass ×WaterSH × (CoilTemp − SetCoil)
(11)

where,
WaterSH = Specific heat of water (Jkg−1K−1).

The overall cost of HVAC control cost is dependent on the
coil cost and the chiller cost for the cooling condition.

CostHVAC = CostCoil + CostChil (12)

IV. ATTACK MODEL

To evaluate the proposed IDS system, we need attack
samples. We consider a stealthy false data injection attack to
be carried out in the sensor measurements of the smart building
control system. Attack modeling is the procedure of analyzing
attack goals given the attacker’s knowledge, accessibility, and
capabilities to launch and attack [27]. In our attack model, we
have the following assumptions:
• The building entrance is exceptionally secured through

biometric sensors and the controller gets alarmed while
experiencing inconsistency in occupant count.

• The total number of the occupant in a zone should not
exceed the maximum zone capacity.

• The controller’s security system verifies the current times-
lot sensor and actuator measurements with the past sensor
measurements.

• The attacker can sniff all the sensor measurements
throughout the day and calculate corresponding actuation
measurements using the knowledge about the HVAC
control model.

A. Attacker Knowledge

We consider a knowledgeable attacker in the attack model
who knows about the building properties, building topology,
occupancy pattern, control, and defense mechanisms of the
smart building HVAC control system. The attacker also knows
about the weather pattern outside the building, which helps to
imitate the exact control decisions. The attacker also knows
about the time-series data analysis capability of the controller.
As a result, the attacker does not alter sensor measurements
drastically and can remain stealthy.

B. Attacker’s Accessibility and capability

In our attack model, we consider that attacker has access to
all the sensor measurements at every timeslot throughout the
day. But the attacker can not perform random manipulation
of sensor measurements and still gets undetected. Alteration
of sensor measurements would not be stealthy if any sensor
measurement got out of bounds from the feasible range. For
example, in a 50 person capacity zone, the occupancy sensor
measurement shows 100 person or a CO2 sensor measurement
is demonstrating 4000 ppm. Attackers are restricted from
compromising the sensor measurements in a feasible range.

Again, if there is no occupant present in the building, the
attacker cannot launch any attack be prevent getting detected
by the controller’s measurement verifier.

C. Attack Goal

We consider two attack intents in our attack model.
• Overall building operational and energy cost increment.
• Maximize occupant’s discomfort by deteriorating IAQ

beyond comfort threshold or changing the temperature
beyond temperature setpoint.

D. Attack Technique

The attacker manipulates the sensor measurements based
on his/her for attaining his/her attack goal. As the attacker is
knowledgeable about the control system’s verifier, he/she alters
the sensor measurements consistently to bypass this security.
Hence, while crafting with occupancy sensor measurements
in the zones, the attacker keeps the total number of occupant
unchanged. We term this attack technique as swapping oc-
cupant as the attacker is adding people in some zone while
removing a similar number of people from the other zones.

E. Adversarial Sample Generation

An attack vector is defined as the set of measurements,
injecting a benign sample with an adversarial sample [28].
Algorithm 1 shows the process the generating an adversarial
sample. The algorithm takes sensor measurements, adversarial
intent, and thresholds to change each sensor measurements as
input and produce the attack vector. If the attacker intends
to increase HVAC control cost, we term that attack as cost
increment attack. In this case, the attacker solves an op-
timization problem of maximizing the total cost associated
with HVAC control by tempering the sensor measurements
within an acceptable threshold. But attacker does not alter
the sensor measurements arbitrarily. The attacker swaps the
occupancy within the zones, so that number of occupants of the
building is consistent. As there is a verifier in the controller, the
attacker tries to alter other sensor measurements accordingly to
make the attack stealthy. The comfort disruption attack aims
at disturbing maximum occupants by altering temperature,
humidity, and CO2 concentration of the zones away from
the comfort range. The constraints of this attack is similar
to the cost increment attack with a different objective. To
avoid getting detected, the attacker also restricts swapping the
number of people in the attack vector generation. We have used
python API of Z3 SMT solver for both solving and optimizing
our modeling constraints [29].

V. PROPOSED IDS MODEL

Our proposed machine learning-based IDS model learns the
pattern of positive sensor measurements from historical data
distribution and identifies anomalous data samples based on
the learned pattern deviation. In this section, We provide an
overview of the proposed IDS model based on the flow of
Algorithm 2. The process of intrusion detection can be divided
into four stages.



Algorithm 1: Generating Adversarial Samples
Input: M, I , Th
Output: δ
if I == ’Cost’ then

maximize
δ

HV ACCost(M, δ) (13a)

subject to

∀z∈ZMtz :=Mtz + δz, (13b)
∀z∈Z − Thz ≤ δz ≤ Thz, (13c)
|Z|∑
i=1

δi = 0 (13d)

else if I == ’Comfort’ then
maximize

δ
deviation(MComf , δComf ) (14a)

subject to ∀z∈ZMComf
tz :=MComf

tz + δComf
z ,

(14b)
∀z∈Z − Thz ≤ δz ≤ Thz (14c)

Algorithm 2: Proposed Model
Input: X, T
Output: predSample
Train Autoencoder-based ADS model, modelAE on X
Train OCSVM-based ADS model, modelOCSVM on
pca(X)
threshAE := max(abs(X−modelAE(X)))
threshOCSVM := 0
for each sample in T do

weightAE := abs(sample−modelAE(sample))
weightOCSVM := modelOCSVM (pca(sample))
normWeightAE :=
abs(normalize(weightAE)−
normalize(threshAE))
normWeightOCSVM :=
abs(normalize(weightOCSVM)−
normalize(threshOCSVM))

if weightAE < threshAE then predAE = 1
else predAE = -1
if weightOCSVM < threshOCSVM then
predOCSVM = -1

else predOCSVM = 1
weightSample =
1
2 × (normWeightAE × predAE +
normWeightOCSVM × predOCSVM)

if weightSample < 0 then predSample[sample]
= ”Anomaly”

else predSample[sample] = ”Benign”

A. Data Collection and Preprocessing

The initial stage of intrusion detection is a benign dataset
creation containing all sensor measurements and correspond-
ing actuation measurements. The sensor and actuation mea-
surements are the features of the dataset. After the benign
dataset is generated, duplicate entries are removed from it.
Then dataset features are normalized using a standard nor-
malization process. The feature space is reduced through
a principle component analysis technique, which facilitates
faster OCSVM model training [30]. The AE model is trained
on all features. Finally, the whole benign dataset is split into
two parts, where 75% of the sample are stored for model
training, and the rest of the data is set aside for testing the
model’s performance on positive samples. Again, an attack
dataset is also prepared from the preprocessed benign dataset
based on the attack technique discussed in Section IV.

B. Model Training

The preprocessed data are used for model training. The
training section involves training two separate models.

1) Autoencoder: The autoencoder-based ML is a neural
network (NN) model that regenerates the features of the
model [31], [32]. NN is a machine model that can learn the
non-linear pattern from a large set of feature relationships. The
input of the nodes of the NN model is the sum of the product
of the weight and output of the previous nodes and a bias
value. The output of the nodes is passed through an activation
function for adding non-linearity in the model. The activation
function is very important for capturing non-linear boundaries
in the feature space for non-linear mapping between the
input features and target. The weights and biases are initially
assigned with random values. These model parameters are
then tuned using a backpropagation process for reducing the
error between the model prediction and target. Again, the
regularization process is also applied in the training process to
generalize the model and prevent over-fitting with the training
samples.

The main difference between the Autoencoder model and a
general NN model is that there is no strict restriction in the
NN model for specifying the number of nodes in the hidden
layer. But in the case of the AE model, the number of nodes
in the hidden layer in the encoder portion should be less than
the number of nodes in the previous layer, and the opposite is
for the decoder portion.

2) One-class SVM: OCSVM model is a variation from
support vector machine (SVM) model for detecting novel
patterns [33], [34]. Support vector machine is a supervised
learning technique in which specialized techniques are used to
separate different classes by drawing hyper-planes. But SVM
model requires a label for the training samples. As our data of
interest are unlabeled, we leverage an unsupervised OCSVM
model, which separates the trained patterns from the origin
using a decision boundary. The model’s decision boundary
can be modified by tuning two hyperparameters γ and ν.

In our model training, the AE model, modelAE gets
trained on the historical samples, while the OCSVM model,



TABLE I
ZONE PROPERTIES OF COD DATASET

Zones Volume
(ft3)

OccCO2

(CFM)
OccEnergy

(kW)
LoadEnergy

(kW)
Capacity
(Person)

Entrance 12570 0.022 0.108 0.72 50
Clemente 11688 0.021 0.107 0.30 10
Warhol 10911 0.018 0.092 0.45 25
Laboratory 17937 0.025 0.120 0.83 40

modelOCSVM gets trained on the PCA components of training
samples. After the models are trained, they are applied to the
benign training dataset to calculate the benign and anomalous
sample separation threshold.

C. Threshold Calculation

Threshold calculation is an essential part in the case of
anomaly detection. Again, the weight of a model prediction
signifies the distance of the predicted value from the model’s
decision threshold. In OCSVM model, a decision function
returns a score in between −1 to +1 [33]. The score is a con-
tinuous value, and this value can be directly used as a weight of
the OCSVM model for a particular sample. The threshold for
the OCSVM model is 0. AE-based learning approach returns
prediction for feature regeneration. The deviation between the
actual features and the predicted features is said to be an error.
Algorithm 2 shows that the AE model threshold, threshAE
is the maximum error between the training predictions and
corresponding features. The thresholds of the models are on a
different scale. The threshold values are normalized to use in
anomaly detection.

D. Anomaly Detection

Finally, for detecting whether a sample is anomalous or
not, our proposed IDS uses the trained models, modelAE and
modelOCSVM along with their thresholds, threshAE and
threshOCSVM . After that, the AE and the OCSVM models
assign score, weightAE and weightOCSVM respectively
for the sample based on the distance from threshAE and
threshOCSVM . The direction of distances determine the
prediction of the models, predAE and predOCSVM . If both
models’ prediction differs, then the normalized weights of
the models, normWeightAE and normWeightOCSVM
are multiplied by the prediction to evaluate the ensembled
outcome.

VI. EXAMPLE CASE STUDIES

This section provides two example scenarios from the COD
dataset with numeric data to clarify how the proposed IDS
works and to illustrate the need for the proposed ensemble
model. Table I shows the properties of the considered four
zones of the COD dataset. A detailed explanation of the dataset
can be found in Section VII-A. The heat radiation and CO2

emission of occupants are generated based on the regular
metabolic rate of human [35] and other cooling/ heating
loads are estimated based on the properties of the zones [36].
Table II shows important sensor and actuation measurements

and corresponding principal components. Only two principal
components are used as the sum of explained variance ratio
of the components is greater than 0.99.

A. Case Study 1

Case study 1 is performed on a benign sample. The OCSVM
model assigned weightOCSVM to be -0.038 and counted
the sample as an anomalous sample as described in Algo-
rithm 2. On the other hand, the weightAE was calculated
as 0.41, which is less than the threshAE = (3.38). Hence
AE model labeled the sample as benign. The normalized
OCSVM threshold, normalize(threshOCSVM)) and score,
normalize(weightOCSVM) are calculated to be 0.84 and
0.28 respectively. Therefore, using δ = 0.5, the measured
normWeightOCSVM is 0.28. Similarly, normWeightAE
is calculated to be 0.46. As, value of normWeightAE is
greater than normWeightOCSVM , the ensembled decision
follows prediction of AE. As a result, the sample is identified
as benign by the proposed model, although the OCSVM model
is labeled an anomaly. Thus the proposed model helps to lower
the false anomaly rate.

B. Case Study 2

Case study 2 is performed on two attack samples. The attack
samples are obtained from a benign sample considering two
different cost increment attacks. The first attack is performed
assuming that there is no restriction on the number of people
swapping among the zones. The second attack is carried out
considering that the attacker swaps at most one occupant to
remain stealthy.

In the non-restricted attack, The OCSVM model assigned
weightOCSVM to be -0.06 and counted the sample as
an anomalous sample. On the other hand, the weightAE
was calculated as 2.57, which is less than the threshAE.
Hence AE model labeled the sample as benign. Using δ =
0.5, the measured normWeightOCSVM is 0.42. Similarly,
normWeightAE is calculated to be 0.07. As, value of
normWeightAE is way less than normWeightOCSVM ,
the ensembled decision follows prediction of OCSVM. As a
result, the sample is identified as an anomaly by the proposed
model, although the AE model labeled is as benign.

In the non-restricted attack, The OCSVM model assigned
weightOCSVM to be -0.06 and counted the sample as
an anomalous sample. On the other hand, the weightAE
was calculated as 1.23, which is less than the threshAE.
Hence AE model labeled the sample as benign. Using δ =
0.5, the measured normWeightOCSVM is 0.42. Similarly,
normWeightAE is calculated to be 0.39. As, value of
normWeightAE is marginally than normWeightOCSVM ,
the ensembled decision follows prediction of OCSVM. As a
result, the sample is identified as an anomaly by the proposed
model, although the AE model labeled it as benign. Thus,
the proposed model reduces the false benign rate of both
restricted and non-restricted cost increment attacks. In the case
of comfort disruption attack, similar benefits are served by the
proposed model while providing equal weight to both models.



TABLE II
EXAMPLE CASE STUDIES

Case Study Sample Type Sensor Measurements Principal
Component

MOcc
1,t MOcc

2,t MOcc
3,t MOcc

4,t AirV ol
1,t AirV ol

2,t AirV ol
3,t AirV ol

4,t PC1 PC2

1 Benign 28 2 1 21 147 22 39 127 -40.72 28.98

2
Benign 30 4 11 22 515 22 91 423 433.12 57.35
Attacked
(No Restriction) 35 0 0 32 593 17 33 528 761.78 708.38

Attacked
(1 Person
Restriction)

30 4 10 23 565 34 112 472 613.49 253.78
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Fig. 2. COD dataset average occupant frequency at different time of the day.
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VII. EVALUATION

We extensively evaluate our proposed IDS’s performance
in detecting anomalies/intrusions, along with its scalability in
terms of execution time.

A. Dataset Description

The COD dataset is generated from a commercial office
building located in Pittsburgh, Pennsylvania [9]. The prepro-
cessed COD dataset has almost 12357 time-series samples and
22 features collected throughout the year (2015-2016), and
among them, 3666 samples were attacked using the attack
technique discussed in section IV-D. The sensor measurements

of the rest of the samples could not be attacked due to the
absence of occupants in all the zones. The occupancy pattern
of the processed COD dataset is normally distributed, and the
average occupancy frequency of each zone at different time
intervals is illustrated in Fig. 2. The average occupancy (95%
confidence interval) of the entrance, Clemente, Warhol, and
laboratory zone are (7.9 - 12.3), (0.2 - 0.5), (0.3 - 1.3), and
(6.1 - 9.7) respectively. The zones’ average indoor tempera-
ture ranges between (53.3 - 56.9) °F, and relative humidity
(63.39 - 65.96)% in the case of 95% confidence interval. The
outdoor climate data is collected from the Pennsylvania state
climatologist website [37].

B. Evaluation of Proposed IDS against Cost Increment and
Comfort disruption Attacks

The learnt frontier of the OCSVM model with benign data
points is shown in Fig. 3 with γ = 0.03 and ν = 0.003. It
seems that the model has not completely learned the pattern
of the distributed points. Tuning the γ and ν parameters allows
capturing more training points. But the ultimate performance
of the model to identify true benign samples gets deteriorated
because the frontier shifts away from the dense regions. The
AE model is trained on a simple NN model with a single
hidden layer consisting of 10 nodes. The models’ parameters
are determined by tuning and observing the performance
of the models on the historical benign sensor and actuator
measurements.

Fig. 4(a), 4(b), 4(c), and 4(d) demonstrates performance of
OCSVM model and AE model against cost increment attack
for no swapping restriction, 1-person restriction, 3-person
restriction, and 5-person restriction respectively. Similarly, per-
formance of individual learner models on restricted and non-
restricted comfort disruption attack are shown in Figure 5(a),
5(b), 5(c),and 5(d). From the figures, we can observe a lot
of such points where both models differ in their opinions. The
proposed IDS ensembles both of them and can produce correct
labeling in most cases, as seen in Table III. The OCSVM
model does not provide any false benign labeling, while the
AE model does not generate any false anomaly labeling in all
considered attacks. That’s why those legends are missing from
the Figures. It is clear from Table III that the proposed model
is better than individual OCSVM and AE models based on
accuracy, precision, recall, and F1-score performance metrics
for all cost increment and comfort disruption attacks [38].
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Fig. 4. OCSVM and AE-based IDS performance against cost increment attack with (a) no person restriction, (b) 1-person restriction, (c) 3-person restriction,
and (d) 5-person restriction.

TABLE III
PERFORMANCE COMPARISON OF INDIVIDUAL IDS AND PROPOSED ENSEMBLE IDS FOR VARIOUS ATTACK CONDITIONS

Attack
Occupant
Swapping
Restriction

IDS Model True
Anomaly

True
Benign

False
Anomaly

False
Benign Accuracy Precision Recall F1-Score

Cost
Increment

No
OCSVM 3666 3476 190 0 97.4% 95.1% 100.0% 97.5%

AE 3482 3666 0 184 97.5% 100.0% 95.0% 97.4%
Proposed 3666 3638 28 0 99.6% 99.2% 100.0% 99.6%

1 Person
OCSVM 3666 3476 190 0 97.4% 95.1% 100.0% 97.5%

AE 2343 3666 0 1323 82.0% 100.0% 63.9% 78.0%
Proposed 3666 3638 28 0 99.6% 99.2% 100.0% 99.6%

3 Person
OCSVM 3613 3476 190 53 96.7% 95.0% 98.6% 96.7%

AE 3484 3666 0 182 97.5% 100.0% 95.0% 97.5%
Proposed 3664 3638 28 2 99.6% 99.2% 99.9% 99.6%

5 Person
OCSVM 3666 3476 190 0 97.4% 95.1% 100.0% 97.5%

AE 3432 3666 0 234 96.8% 100.0% 93.6% 96.7%
Proposed 3666 3638 28 0 99.6% 99.2% 100.0% 99.6%

Comfort
Disruption

No
OCSVM 3666 3476 190 0 97.4% 95.1% 100.0% 97.5%

AE 2712 3666 0 954 87.0% 100.0% 74.0% 85.0%
Proposed 3666 3638 28 0 99.6% 99.2% 100.0% 99.6%

1 Person
OCSVM 3666 3476 190 0 97.4% 95.1% 100.0% 97.5%

AE 2179 3666 0 1487 79.7% 100.0% 59.4% 74.6%
Proposed 3666 3638 28 0 99.6% 99.2% 100.0% 99.6%

3 Person
OCSVM 3666 3476 190 0 97.4% 95.1% 100.0% 97.5%

AE 3158 3666 0 508 93.1% 100.0% 86.1% 92.6%
Proposed 3666 3638 28 0 99.6% 99.2% 100.0% 99.6%

5 Person
OCSVM 3662 3476 190 4 97.4% 95.1% 99.9% 97.4%

AE 2999 3666 0 667 90.9% 100.0% 81.8% 90.0%
Proposed 3666 3638 28 0 99.6% 99.2% 100.0% 99.6%

The anomalous samples are counted as positive samples for
evaluating the performance metrics, and benign samples are

identified as negative samples. The accuracy metric provides
the ratio of correctly identified samples with respect to all
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Fig. 5. IDS performance against comfort disruption with (a) no person restriction, (b) 1-person restriction, (c) 3-person restriction, and (d) 5-person restriction.

samples, while precision comes up with correctly identified
anomalous samples over all IDS labeled anomalous samples.
Again, the recall metric provides us the measure of correctly
identified anomalous samples over all actual anomalous sam-
ples. Finally, the F1-score gives the harmonic mean of preci-
sion and recall considering both false positive and negative
samples. Table III shows that although in some cases AE
shows better precision than the proposed model, the F1-score
is higher for all the cases [39].

C. Evaluation of the IDS’s Scalability

The linear relationship between the number of features and
required execution time, as shown in Fig. 6 indicates the
feasibility of implementation of the proposed IDS model. The
average execution time for 8-feature control systems is found
to be 2.6 ms and, for 22-feature system, the execution time
has risen up to 5.3 ms. The IDS is tested on Dell Precision
7920 Tower workstation with Intel Xeon Silver 4110 CPU
@3.0GHz, 32 GB memory, 4 GB NVIDIA Quadro P1000
GPU.

VIII. CONCLUSION

The smart building control system is becoming more vul-
nerable day by day due to novel cyberattacks posing health
and economic concerns to the building occupants. This work
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Fig. 6. Execution time of the anomaly detection with the increasing the
number of features.

proposes a novel ensemble learning-based IDS that combines
the benefits of two different unsupervised ML models, AE
and OCSVM. We generate attack samples for evaluating our
IDS considering cost increment and comfort disruption-based
stealthy false data injection attack. Our experimentation on
the COD dataset shows that this ensemble technique provides
a significant performance boost, providing up to 99.6% F1-
score. In the future, we will explore the ensemble technique



with other unsupervised ML approaches for better novelty
detection. We will also consider verifying our IDS against
other attacks and control systems in our future works.
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