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Abstract—Modern smart home control systems utilize real-
time occupancy and activity monitoring to ensure control ef-
ficiency, occupants’ comfort, and optimal energy consumption.
Moreover, adopting machine learning-based anomaly detection
models (ADMs) enhances security and reliability. However, suf-
ficient system knowledge allows adversaries/attackers to alter
sensor measurements through stealthy false data injection (FDI)
attacks. Although ADMs limit attack scopes, the availability of
information like occupants’ location, conducted activities, and
alteration capability of smart appliances increase the attack sur-
face. Therefore, performing an attack space analysis of modern
home control systems is crucial to design robust defense solutions.
However, state-of-the-art analyzers do not consider contemporary
control and defense solutions and generate trivial attack vectors.
To address this, we propose a control and defense-aware novel
attack analysis framework for a modern smart home control
system, efficiently extracting ADM rules. We verify and validate
our framework using a state-of-the-art dataset and a prototype
testbed.

Index Terms—Cyberattacks; smart home; HVAC control sys-
tem; formal modeling; machine learning; threat analysis.

I. INTRODUCTION

Contemporary home control systems use enormous re-
motely accessible and controllable internet-connected smart
devices to ensure energy efficiency and occupantś comfort.
The adoption of smart devices is increasingly growing due
to their affordability, accuracy, interoperability, productivity,
cost reduction, and so on. Smart home control systems are
currently assisted with voice-controlled smart devices (e.g.,
turning on the bedroom light through a smartphone voice
assistant) or self-learned automated closed-loop controllers
(e.g., smart cooling controller self-adjusted based on the
homeowners’ schedule). The prevalence of occupancy sensors
and tracking devices (e.g., through smartwatches or RFID
sensors) accounts for improved accuracy and efficiency of
the control systems through real-time occupants’ location and
activity identification.

Unfortunately, the widespread use of the internet of things
(IoT) network in smart devices has left smart home control
systems highly susceptible to multiple cyberattacks. Such
devices possess restricted security capabilities, leaving them
vulnerable to constantly evolving and sophisticated attacks due
to their open network communication. Hence, millions of IoT
devices are currently functioning without adequate security
protection [1]. Since smart homes/buildings are susceptible to

several well-known attacks such as ransomware, distributed
denial of service (DDoS), and data manipulation, it is crucial
to investigate the vulnerability of the heating, ventilation, and
air conditioning (HVAC) system, which is a critical component
of a home. Our security analysis considers false data injection
(FDI) attacks on demand-controlled HVAC (DCHVAC) sys-
tems. We consider a sophisticated attacker having malicious
intent to maximize the overall energy consumption. The attack
motivation could be sabotage/rivalry/personal vendetta that
projects financial loss to the home dwellers. While FDI attacks
on smart homes are considered to be in the conceptual phase,
instances of such attacks have been reported, as demonstrated
by an attacker who boasted publicly of increasing a home’s
temperature by 20◦ F. [2].

The attack space analysis of a smart home control system
is an active research area. In one of our existing works, we
analyzed FDI attacks on an American Society of Heating,
Refrigerating, and Air-Conditioning Engineers (ASHRAE)-
based DCHVAC system (i.e., optimally mixes return and fresh
air to meet energy efficiency and occupant’s comfort) in
the smart building context [3]. A limited set of verification
rules like maximum capacity of the zones, IAQ measure-
ment consistencies, occupants count consistencies throughout
the zones with the entrance count, etc., were considered in
BIoTA for assessing the attack space of the home/ building
control system. However, most modern smart home/building
control systems are quite different than the assumption made
in the existing works. Modern smart home control systems
often use machine learning (ML)-based anomaly detection
model (ADM) for identifying measurement inconsistencies,
smart appliances control through voice assistants (through
dedicated and other IoT device controllers), and occupants’ ac-
tivity monitoring tool. The ML-based ADM has already been
adopted in industrial automation. e.g., BuildingIQ offers an
intelligent energy management system that includes occupancy
sensors and can adjust HVAC settings based on occupancy and
building usage patterns [4]. Although not implemented in the
industrial application, the activity recognition-based DCHVAC
system has also been adopted in research facilities like KTH
Live-In Lab, CASAS, ARAS testbeds [5], [6], [7]. Hence,
existing regulation-based approaches [8], [9], [10], formal
security analyses [11], [12], ML-based approaches [13], and
ML-model verification [14], [15], [16] tools are inapplicable



in such ADM-based smart home contexts since the ADMs
learn the pattern of occupants’ behavior, which makes the
attacks considered in the existing works unstealthy. We pro-
pose Smart Home Analytics for Threats Targeting Energy
Routine (SHATTER) framework that identifies critical threats
of smart home control systems with ML-based ADM and
activity identification modules. While the ADM limits the
attack scope of SHATTER-identified attacks, the appliance-
triggering attack utilizing the activity identification module
increases the attack impact. Our evaluation shows that ML-
based ADM reduces the attack impact by 50% while leverag-
ing the activity identification modules; an attacker can increase
the attack impact by 20% as compared to the state-of-the-
art (i.e., BIoTA) framework. For formally modeling the ML-
based ADM, we use a convex hull algorithm [17], where the
constraint acquisition from the ML models is inspired by the
SHChecker framework [18]. A satisfiability modulo theories
(SMT)-based solver is used to identify optimal attack paths
to launch stealthy FDI attacks in the considered smart home
control system. We verify our proposed framework with two
houses of state-of-the-art dataset naming Activity Recognition
with Ambient Sensing (ARAS) [5] and our built prototype
testbed. In summary, our contributions are as follows:

• We formally model a smart home HVAC control system
with ML-based ADM and activity recognition module
using first-order predicate logic by extracting constraints
from the component models to analyze the system.

• We develop a threat analysis framework (SHATTER) to
identify potential attack vectors in the smart home control
system by formally modeling FDI attacks with variable
attack attributes.

• We conduct experiments with our formal threat analysis
framework on state-of-the-art datasets and a real proto-
type testbed to identify critical attack vectors and evaluate
the tool’s scalability in analyzing the attack vectors.

All implementation and evaluation results are reproducible
with the source code on GitHub [19]. The rest of the pa-
per is organized as follows: we provide an overview of
the considered smart home system and its components in
Section II. We provide a formal description of the problem
domain and considered the attack model in Section III. In
the following section, we present the technical details of
the proposed SHATTER framework. We provide case studies
to give insights about our proposed framework’s working
principle and capabilities in Section V. Then, we show the
validation of the SHATTER framework with a real prototype
testbed. We evaluate SHATTER using state-of-the-art datasets
in Section VII. A comprehensive literature review is presented
in Section VIII. We conclude the paper in Section IX.

II. SMART HOME CONTROL SYSTEM

We present a comprehensive but simplistic overview of the
smart home control system considered in this work considering
a DCHVAC system that can supply the optimal air to meet
occupants’ comfort and energy efficiency. Our considered
smart home control system can track/locate the occupants in
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Fig. 1. Smart home system with HVAC controller.

Actuators

Temperature

CO2
Vents

Demand-Control
HVAC

Dedicated
Home Assistant

Device

Other IoT Device
Running 

Home Assistant
Application

Supply Fan

Smart
Appliances

Smart Home Control System

Sensors

Smart Appliances
Status

IAQ

Occupancy

Controller

Motion
RFID

Fig. 2. Components of smart home control systems.

0 5 10 15 20 25 30
Day of the Month

0

2

4

6

8

10

12
Co

nt
ro

l C
os

t (
$)

ASHRAE Control Cost
SHATTER Control Cost

(a)

0 5 10 15 20 25 30
Day of the Month

0

2

4

6

8

10

12

Co
nt

ro
l C

os
t (

$)

ASHRAE Control Cost
SHATTER Control Cost

(b)

Fig. 3. Comparison between ASHRAE and proposed Control Cost ($) for
(a) ARAS House-A (b) ARAS House-B.

different zones and their conducted activities that allow pre-
dicting/estimating the IAQ (i.e., temperature and air pollutants)
and hence the cooling/heating/ventilation demand. The close
approximation of demand enables the calculation of optimal
actuation of the control system. Figure 1 shows the architecture
of the considered home control system, where the system
acquires various IoT-based sensor information to estimate
the smart home state (i.e., occupants’ location, activity, and
appliance status). The HVAC controller, which is the core
controller of our considered control system, generates the
optimal control signal to actuate the supply fan, return fan, and
vents. We consider that all the appliances in the home are smart
IoT devices and can be accessed, triggered, or actuated by
the dedicated device or application-controlled voice assistants.
The status of the smart appliances can be identified by the
sensor installed on the appliances or the appliance control
applications. Figure 2 shows the hierarchy of the control
system’s different components.

Although we adopt the DCHVAC controller based on
ASHRAE standards, some variations in our considered con-
troller made it more efficient. Figure 3 shows the control
cost comparison (the proposed DCHVAC controller is 48.2%
efficient for ARAS house-A, while 53.35% efficient for house-
B). It is to be noted that the purpose of this work is not
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to develop an efficient controller. However, the adoption of
a sophisticated controller helps us identify critical attack
vectors. The efficiency of the proposed controller is due to
the following 3 reasons.
(1) Activity-Based Actuation We consider an occupant

activity-based DCHVAC controller, unlike the ASHRAE-
based control model, which considers an average change
in IAQ by the occupants. However, research by Persily et
al. [20] shows that the level of physical activities of the
occupants impacts the metabolic rate, in turn, the IAQ of
the home.

(2) Activity-Appliance Relationship The ASHRAE standard
considers an average load (i.e., appliances) for the HVAC
control system estimated by studying historical data.
However, the estimated load is not good for meeting
instantaneous demand. For instance, a person studying in
the living room does not interact with any appliances and
the control system with average load modeling will supply
more air, thus will create discomfort for that person. Hence
unlike BIoTA, we relate the appliances with conducted
activity (i.e., appliance accessing information is used for
activity recognition).

(3) Occupants tracking Another factor that contributed to
developing an efficient controller is that the considered
control system is continuously tracking zone-wise oc-
cupants through RFID sensors. Persily et al. [20] also
identified that the occupant demographics influence the
heat and pollutant generation in the zones. For instance, a
middle-aged man generates twice as much air pollutants
compared to an infant.

The considered controller integrates an ML-based ADM
for detecting sensor measurement inconsistencies, which is
detailed in the following section.

III. PROBLEM DEFINITION AND ATTACK MODEL

This section provides a formal definition of the assumed
home control system and a summary of the attack model.

A. Problem Definition

We consider a smart home, H with smart sensors S and ac-
tuators A, which are triggered by a control system C. Both au-
tomated (e.g., HVAC controller) and manual controllers (e.g.,
smartphone sending voice commands to trigger a microwave in
the kitchen) are part of C. Different activities D of occupants,
O residing in different zones, Z of H are constantly monitored
through some S (e.g., RFID, photocell, contact, sonar distance
sensors). The use of RFID sensor devices allows tracking the
specific occupant/s residing in different Z . The instantaneous
activity information of O at different Z helps build a more
energy-efficient HVAC controller (i.e., a component of C)
since different human activity correlates to different metabolic
rates that directly control the IAQ of the zones. Other than
the HVAC controller, our problem scope considers a smart
home automation controller, which triggers smart devices (e.g.,
smart lights, smart kitchen utensils) throughout different Z
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Fig. 4. Hyperparameter tuning of (a) DBSCAN and (b) K-Means clustering-
based ADM for ARAS HAO1 dataset.
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Fig. 5. Progressive incremental performance visualization for (a) DBSCAN
and (b) K-Means clustering-based ADM based on F1-score.
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Fig. 6. Cluster visualizations of (a) DBSCAN-based ADM and (b) K-Means
clustering-based for ARAS HAO1 dataset.

using dedicated home assistant devices (e.g., Amazon Alexa)
or other IoT device (e.g., smartphone) controller applications.

An ML-based (combined with some verification rule) ADM
E checks the measurement consistencies at different times-
tamps. However, with the knowledge of C and E, an attacker
can still launch a stealthy FDI attack through intelligently
crafting different S. Suppose, there is only one occupant in
H, and he/she is staying in the bedroom zone. The occupant
doing some chores will be alarmed if the washer or dryer
is turned on through adversarial attempts, although unwanted
turning on of the oven or microwave in the kitchen zone will
be unnoticeable to the occupant. However, if the occupant
is sleeping deeply and the bedroom door is closed, she will
most likely be unaware of the adversarial activation of the
washer or dryer. Hence, we consider an occupant activity
model that learns the temporal behavioral and activity patterns.
For example, if the occupant enters the bathroom at 2.00 pm,
he/she is taking a shower for 20 minutes to 30 minutes, or
if the occupant goes into the bedroom zone at 10 pm, he/she
sleeps for 6 to 8 hours.
Anomaly Detection Model (ADM) We consider ARAS
datasets for evaluating our work, which captures every minute
data of 27 different occupant activities from 4 zones of 2
homes (2 occupants each) over a month period [5]. The

3



dataset is used to train two different clustering-based ADMs-
DBSCAN and K-Means clustering [21], [22]. For training the
ADMs, we consider four datasets, which we name HAO1 (i.e.,
a dataset containing information about one occupant of house
A), HAO2, HBO1, and HBO2 datasets, and use the names
throughout the write-up. The hyperparameter of the ADMs
are optimized using Davies-Bouldin Index (DBI), Silhouette
Coefficient (SC), and Calinski-Harabasz Index (CHI) since the
ground truth of the clusters are not known [23]. The higher
values of SC and CHI and the lower value of DBI yield
better performance. Figure 4 shows the performance of the
ADMs based on different hyperparameters for HAO1. The
optimal DBSCAN hyperparameter minPts (i.e., the minimum
number of points for cluster forming) is found to be 30, where
the optimal K-means clustering hyperparameter k (number of
clusters) is 29. The other hyperparameter for DBSCAN (i.e.,
maximum distance in between within cluster samples) is con-
sidered to be 3 (i.e., the minimum number of points to create
a convex hull). Since the datasets lack adequate samples, the
ADMs’ performance is not significant. However, the progres-
sive learning capability for both ADMs (i.e., linearized with
convex hull) shown in Figure 5 suggests that after learning a
few more days/months of data, the ADM will fully learn the
occupants’ behavioral patterns. To evaluate the performance
of the ADMs, we generated attack samples using the BIoTA
framework [3]. We use the F1-score (i.e., the harmonic mean
of precision and recall) for the performance evaluation since
the datasets are imbalanced datasets. The HAO1 dataset has
12.4%, 12.1%, 13.6%, and 14.3% attack data compared to the
benign data for 10, 15, 20, and 25 days of training samples(out
of 30 days), respectively. For the HAO2 dataset, the ratios
are 3.6%, 3.61%, 3.73%, and 3.71%, respectively. Similarly,
for HBO1 and HBO2 datasets, the ratios are around 7%. The
ADM clusters visualized in Figure 6 show that the clusters
from K-means clustering cover a larger area than DBSCAN
clustering. The main reason is that the K-means clustering
algorithm clusters every sample in training sets into benign
samples (i.e., no benign or outlier samples). Here we mainly
discuss the choice of ADMs and their hyperparameters. The
performance of ADMs is evaluated, reasoned, and discussed
more through the SHATTER framework in section VII.

B. Attack Model

The attack model is used to generate parameterized attack
procedures and functions that target a specific cyber-physical
system (CPS), in our case, a smart home. In this section, we
provide a summarized version of the attack model, which is
detailed and formally analyzed in Section IV.

1) Attack Assumptions: The proposed framework considers
a set of assumptions.
(a) Assumption I: Attacker has complete knowledge of the

zone properties, smart home control algorithm, and ADM.
Moreover, the parameters considered in the zone, appli-
ance, and activity modeling are known to the attacker.

(b) Assumption II: We assume each zone of our considered
smart home accommodates only single measurements for
measuring the IAQ.

(c) Assumption III: We consider the attacker having access
to sensor measurement (IAQ, occupancy, and appliances’
status) can read and alter the measurement, while access
to an appliance indicates the feasibility of activation of an
unacitvated appliance.

(d) Assumption IV: All actuation devices cannot be altered
or activated similar to smart appliances. For instance,
cooling/heating fans and vents are out of the attack scope.

(e) Assumption V: The controller and communication be-
tween the controller to the actuator is out of attack scope.
Since the controllers are high computation devices they
are hard and expensive parts to be compromised. Further-
more, the HVAC controllers and actuators are physically
connected through a wired medium, which makes them
sturdy against attackers’ manipulation [24].

2) Attack technique: In our formal threat analysis frame-
work, we are considering FDI or measurement manipulation
attacks. Altering the sensor measurements, an attacker can
lead the E to make an erroneous system state, thus making
the C send an improper control signal, resulting in actuating
the A differently than required. The measurement alternations
are considered to be performed intelligently to evade the E.
The proposed framework finds out only those attack vectors
(each contains the false values to be injected in different
sensor measurements) that are attainable with the attacker’s
capability. It is to be noted that inaudible voice commands
are also considered FDI in the attack model and are part of
the attack vector. The H can be attacked with FDI attacks in
different ways. For instance, an attacker can leverage physical
interaction features on IoT devices to conduct a stealthy
attack against IoT systems. The attacks are primarily launched
using an app or environment where an attacker seeks to
exploit aphysical channels [25]. The SHATTER-considered
attacks can be broadly classified into two categories- sensor
measurement acquisition and alteration as detailed followingly.
Measurement acquisition through physical sensing The
occupants’ location (i.e., within Z) can be sniffed by RF
signals as depicted in [26]. The Access point, along with the
S emits RF that constantly reflects on the occupant’s body
and, therefore, sends out the information about the occupant’s
location in the building. Here, the adversary uses commodity
and low-cost sniffers to conduct a covert reconnaissance attack
that can continually monitor and pinpoint human activity
within a particular location in a home or an office without
having any physical or remote access to the WiFi devices.
Measurement acquisition through eavesdropping commu-
nication packets In an IoT network, nodes generally send,
forward, or collect packets along with evaluating the routing
consistency of each path [27]. The attacker’s access to the
router can act as a man-in-the-middle and sniff the communi-
cation packets through packet capture and analysis tools.
Measurement alteration through packet crafting Through
man-in-the-middle attack, the attacker can not only eavesdrop
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on packets but also alter/craft packet information utilizing ARP
poisoning and IP/MAC addressing spoofing attack. The goal is
to alter the measurement information sent by specific sensors.
Through this approach, the attacker can modify all the sensor
measurements and appliances’ statuses. Such alterations are
hardly detected by the control system.
Activation of Appliances through inaudible voice com-
mands Smart IoT devices require charging whenever the
battery becomes low in other to function appropriately. A
recent attack has shown the feasibility of sending inaudible
voice commands from smartphones through malicious charg-
ing plugs [28]. To perform this attack, the occupant must
charge their device. Moreover, inaudible voice commands
can be transmitted through other approaches as identified
by the existing works – Backdoor [29], DolphinAttack [30],
LipRead [31], SurfingAttack [32], etc. These attacks allow
an adversary to send inaudible voice commands to the voice
assistants and stealthily activate the appliances.

3) Attack Goal: The SHATTER framework’s primary goal
is to increase the energy consumption of the home through
stealthy FDI attacks. The attack demands alteration of the
necessary sensor measurements to maximize the overall energy
consumption in H by forcing C to flow more air (i.e., both
fresh and return air) through the supply air duct in different
Z . To launch stealthy attacks, the attacker needs to bypass:
ADM: Inconsistencies in the occupancy or IAQ measurement
from the learned occupant’s behavioral pattern will be recog-
nized as an anomalous event.
Occupants: Turning on the washer in the kitchen while an
occupant is cooking will lose the attack’s stealthiness.

4) Attacker’s Attributes: For modeling the attack, we con-
sider variable accessibility and resource constraints for the at-
tacker. This work considers a knowledgeable attacker aware of
the surrounding weather pattern, smart home zone attributes,
occupancy information, underlying control, and defense mech-
anisms (i.e., ADM) of the smart home control system. It is
unreasonable to assume that the attacker has access accessi-
bility to all of the resources (i.e., sensor devices) to initiate
a stealthy FDI attack. The attack model specifies access to
sensor measurements (i.e., IAQ/occupancy/appliances’ status
measurement), and access to appliances (i.e., appliances that
can be triggered by inaudible voice commands). The major
differences between BIoTA and SHATTER frameworks are
illustrated in Table I.

IV. TECHNICAL DETAILS OF THE SHATTER FRAMEWORK

In this section, we provide a detailed overview of the
SHATTER framework. SHATTER formally models the smart
home control systems, ADM, and the attack model using the
Z3 tool that leverages SMT [33]-based solver and optimizer
to identify stealthy attack vectors that can optimally increase
the energy consumption of the home. Table II demonstrates
the modeling notations.
A. Formal Modeling of the smart home control system

For the HVAC control system, we mainly consider tem-
perature, occupancy, and CO2 concentration as measurement

TABLE I
PRIMARY DIFFERENCES BETWEEN BIOTA AND SHATTER FRAMEWORK.

Criteria BIoTA SHATTER
Application
Domain

Smart building/ homes Smart homes

Number of Occu-
pants

∼(10-1000) ∼(1-10)

Anomaly Detection
Model Rule-based ML-based

Occupant’s Activity
Tracking Not considered Considered

Appliance Model-
ing

Fixed load at every con-
trol cycle

Dynamic load model-
ing

Attack Constraints Stealthy bypass control
system

Deceive both control
system and occupants

Attack Technique Greedy FDI attack Dynamic FDI attack

values. Because building occupants are the primary source of
continuous heat and CO2 generation, accurately measuring
the number of people in real-time utilizing different building
sensor systems is critical for computing energy efficiency and
occupant comfort.

Ventilation Control Constraints: The HVAC control sys-
tem adds optimal fresh outside air to the supply air for
maintaining the CO2 concentration in occupants’ comfort
range. The ventilation requirement depends on CO2 emitted
by the occupants, which varies based on the metabolic rate
(depending on the occupants’ age and levels of conducted
physical activities).

∀t∈T ∀z∈Z
SOE
t,z × PCE

o,z,a=At,o,z
×∆t

PV
z

= PCS
t,z −(

1− Qt,z

PV
z

)
× SC

t,z −
Qt,z ×∆t

PV
z

× POC
t

(1)

Temperature Control Constraints: The HVAC control
system optimizes the usage of zone return air to the supply
air for quickly meeting the zones’ setpoint temperature and
minimizing the home’s energy consumption. The cooling
demand is dependent on the appliances’ heat radiation and
the occupants’ metabolic rate. In this work, we consider the
load demand based on the appliances’ status, unlike the control
rules of BIoTA (constant load demand). The factor 0.3167 in
Equation 2 is used since it does not vary significantly with the
parameters change. We multiply a factor (PHRF

d ) with total
energy consumption for all devices to calculate sensible heat
gain (e.g., LED lights radiate 12% heat [34]).

∀t∈T ∀z∈Z∀d∈D Qt,z × (PTS
z,t − PTSP

z,t )× 0.3167 =

SOE
t,z × PHR

o,z,a=At,o,z
+ SD

t,z,d × PPC
d × PHRF

d

(2)

Equations 1 and 2 constraint the airflow requirement in the
zones and account for optimal estimation of airflow to satisfy
both occupant’s comfort and energy savings needs.

HVAC Control Cost Calculation: The HVAC cost cal-
culation mainly depends on the air quality in the mixed air
chamber. The air handling unit (AHU) optimally mixes the
fresh and return air to meet the zone’s IAQ demand. The air
mixing chamber of the HVAC controller mixes both outside
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TABLE II
MODELING NOTATIONS

Type of No-
tation

Nota-
tion Description Data

Type

General

Z Set of all zones Set
O Set of all occupants in a multi-occupant setup Set
D Set of all appliances Set
T Set of all timeslots in a day at each sampling

time
Set

A Set of all activities Set
Dz,d d-th appliance at zone, z Integer
At,o,z Activity conducted by o-th occupant at t-th

timeslot in z-th zone
Integer

∆t Sampling time of the controller Integer

Sensor
Measurements

S Set of all sensor measurements Set
SOE
t,z Occupancy estimation measurement (occu-

pants count) at t-th timeslot in z-th zone
Integer

SOT
t,o,z Tracking presence of o-th occupant at t-th

timeslot in z-th zone
Boolean

SC
t,z CO2 sensor measurement at t-th timeslot in

z-th zone
Real

ST
t,z Temperature (◦ F) sensor measurement at t-

th timeslot in z-th zone
Real

SD
t,z,d d-th appliance’s status (on/off) at t-th times-

lot in z-th zone
Boolean

Actuation
Measurements

Q Set of all airflow (cfm) measurements Set
Qt,z Airflow based at t-th timeslot in z-th zone Real

Variable
Parameters

POT
t Outdoor temperature at timeslot, t Real

POC
t Outdoor CO2 concentration at t-th timeslot Real

PCS
t,z CO2 setpoint at t-th timeslot in z-th zone Real

PTSP
t,z Temperature of supply air at t-th timeslot in

z-th zone
Real

PTS
t,z Temperature setpoint at t-th timeslot in z-th

zone
Real

PTM
t,z Temperature of mixed air at t-th timeslot in

z-th zone
Real

PTEC
t Total energy consumption (kWh) at t-th

timeslot
Real

Fixed
Parameters

PCE
o,z,a CO2 emission per person per minute for

occupant o at z-th zone performing activity,
a

Real

PHR
o,z,a Heat radiation per person per minute for o-

th occupant at z-th zone performing a-th
activity

Real

PV
z Volume (ft3) of zone, z Real

PPC
d Power consumption (Watt) of the d-th appli-

ance if it is turned on
Real

PHRF
d Heat radiation factor of d-th appliance that

nees to be multiplied by power consumption
(Watt) to obtain the heat radiation (kWh)
from appliance

Real

PCOP
t Off-peak hour energy cost ($/kWh) Real

PCP
t Peak hour energy cost ($/kWh) Real

PBS Battery total storage (kWh) that is charged
at off peak hours and used at peak hour to
reduce peak hour energy cost

Real

Attack
Vector

δCt,z False measurement to be added in CO2

sensor measurements in zone, z at timeslot
t

Real

δTt,z False measurement to be added in temper-
ature sensor measurementat t-th timeslot in
z-th zone

Real

δOt,o,z False measurement to be multiplied with oc-
cupancy sensor measurements for o-th occu-
pant at t-th timeslot in z-th zone

Boolean

δDt,z,d False measurement to be multiplied with d-
th appliance sensor measurements at t-th
timeslot in z-th zone

Boolean

I Attack optimization window Integer

fresh air and recirculating return air optimally to meet energy
efficiency and occupants’ comfort.

∀t∈T PTEC
t =

∑
z∈Z

Qt,z × (PTM
z,t − PTSP

z,t )× 0.3167

× ∆t

60000
+

∑
z∈Z,d∈D

SD
t,z,d × PPC

d

(3)

GS =
∑

t1∈T OP∨(t1∈T P∧
∑t1

t=T P
0

PTEC
t ≤PBS )

PTEC
t1 × PCOP

t1

+
∑

(t2∈T P∧
∑t2

t=T P
0

PTEC
t2

>PBS )

PTEC
t2 × PCP

t2

(4)

The instantaneous power consumption considers both HVAC
and appliance-induced consumption as shown in Equation 3.
We assume that the home has battery storage that is charged at
the off-peak hour and discharged at the peak hour to meet its
energy demand and thus reduce the household energy cost. The
energy pricing is taken from PG&E electricity rate plans [35].
For brevity, we consider that the battery storage is always
charged the full during off-peak hours. Hence, during off-peak
hours and a portion of peak hours (i.e., until the battery is
fully discharged), the residential loads operate at off-peak hour
costing as shown in Equation 4.

B. Formal Modeling of the Anomaly Detection Model (ADM)

The SHATTER framework also extracts formal constraints
from the ADM to generate stealthy attack vectors. We consider
a clustering-based anomaly detection approach in this work,
which continuously checks the duration of stay for an occupant
in a particular zone based on the arrival time of that occupant.
The considered ADM uses a clustering technique to attain
the valid pairs of (arrival time and duration of staying).
The hypothesis of choosing this approach is that occupants
converge to a set of actions (i.e., moving from one zone to
another, doing household chores) after habit formation. In
the following write-up, we formally model the ADM after
providing an intuitive explanation of the ADM using a toy
example. We consider that ADM always checks the duration
of staying, t2, at a particular zone, while the occupant has
entered the zone at the time, t1, with a pre-trained model. The
pre-trained model comes up with several clusters. If the point
(t1, t2) is not within any of the clusters, the controller raises
the alarm.

Figure 7 shows two clusters (Co,z ,1 and (Co,z ,2 ) in a 2D data
plane where Co,z ,1 consists of seven line segments (Ko,z ,1 ,
Ko,z ,2 , . . . , Ko,z ,7 ) and Co,z ,2 consists of three line segments
(Ko,z ,8 , Ko,z ,9 , and Ko,z ,10 ). We denote the end points of any
line segment (Ko,z ,i ) are (Xo,z ,i ,Yo,z ,i ) and (Xo,z ,i ,Yo,z ,i ),
where Yo,z ,i ≥ Yo,z ,i .
(a) leftOfLineSegment(t1, t2,Ko,z ,i): This function checks if

the point (t1, t2) is on the left side of the line segment,
Ko,z ,i .

(b) withinCluster(t1, t2, Co,z ,k ): This function returns True
if the data point (t1, t2) is within the cluster, Co,z ,k .
The point is considered to be within a cluster if it is
leftOfLineSegment of all the clusters.

A new set of formal modeling notations- EA
t1,o,z , EE

t1,o,z ,
and ES

t1,o,z derived from the occupancy sensor measurements
for modeling the ADM. As the name suggests, EA and EE
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Fig. 7. Sample convex hull representation of the ADM cluster with formal
notations.

respectively denote the arrival and exit events of all zones and
for all occupants.

∀t1∈T EA
t1,o,z → SOT

t1,O,z ∧ ¬SOT
t1−1,O,z (5)

∀t2∈T EE
t2,o,z → SOT

t2,o,z ∧ ¬SOT
t2+1,o,z (6)

The stay duration for the occupants at a specific zone can
be modeled using the arrival and exit events.

∀t1∈T ES
t1,o,z = (t2 − t1) → EA

t1,o,z ∧ EE
t2>t1,o,z

∧∀t1<t3<t2∈T SOT
t3,o,z

(7)

The occupancy sensor measurements are considered to be
benign if all the entering and leaving events of the occupants
are consistent with the DBSCAN clusters.

consistent(SOT ) → ∀o∈O∀z∈Z∀t1∧EE
t1,o,z

withinCluster(t1, t2 = ES
t1,o,z, Cz,o)

(8)

Here,

withinCluster(t1, t2, Cz,o) →
∃c∈Cz,o∀k∈Kz,o∧In(k,c) leftOfLineSegment(t1, t2, k)

(9)

leftOfLineSegment(t1, t2 = ES
t1,o,z,Kz,o,i) →

(t1(Yz,o,i,1 − Yz,o,i,2)− t2(Xz,o,i,1 −Xz,o,i,2)−
(Xz,o,i,1Yz,o,i,2 −Xz,o,i,2Yz,o,i,1)) < 0

(10)

The equations 9 and 10 say that the (t1, t2) pairs will be
considered to be within the valid clusters if at least one cluster
encloses the point. The condition of being in a cluster (i.e.,
convex hull) is that the point is the left-hand side of all that
cluster line segments.

C. Formal Modeling of Attacks

The main goal of the attack is to maximize the energy cost
by adding false measurements. The following three equations
demonstrate the FDI attack in IAQ, occupancy, and appliance
measurements, respectively.
(1) ∀t∈T A∀z∈ZA∀p∈[C ,T ]S̄p

t,z = Sp
t,z + δpt,z

(2) ∀t∈T A∀o∈OA∀z∈ZA S̄OT
t,o,z = SOT

t,o,z × δOT
t,o,z

(3) ∀t∈T A∀z∈ZA∀d∈DA S̄D
t,z,d = SD

t,z,d × δDt,z,d
Here, δ is the attack vector that denotes the required injection
to accomplish the attack goal.
Attack Goal:

maximize GS̄ (11)

Attack Constraints:

consistent(SOT + δOT ) (12)∑
t∈T A,o∈OA,z∈ZA

S̄OT
t,o,z =

∑
t∈T A,o∈OA,z∈ZA

SOcc
t,o,z (13)

∀t∈T A∀o∈OA∀z∈ZA

SOE
t−1,z × PCE

o,z,a=At−1,o,z
×∆t

PV
z

= SC
t,z

−
(
1− Qt−1,z

PV
z

)
× SC

t−1,z −
Qt−1,z ×∆t

PV
z

× POC
t−1

(14)

∀t∈T A∀z∈ZA∀d∈DA Qt−1,z × (ST
t,z − ST

t−1,z)

× 0.3167 = SOE
t,z × PHR

o,z,a=At,o,z
+ SD

t,z,d × PPC
d × PHRF

d

(15)

∀t∈T A∀z∈ZA∀d∈DA S̄D
t,z,d = ¬SD

t,z,d → ∀o∈Ostealthy(d , o)
(16)

These are attack constraints, where Equation 12 demands
that altered occupancy measurement should follow the clus-
ters. Equations 14 and 15 are adopted from the BIoTA frame-
work, which requires prediction made in the previous timeslot
about sensor measurements and actuation should be consistent
with the current timeslot. The constraint in Equation 16 says
that inaudible voice command-based appliance activation is
possible if the device is present in an unoccupied zone.
Attacker’s Property: An attacker may change a sensor
measurement if he/she has the accessibility to that particular
measurement. The attacker cannot inject false measurements
into the inaccessible sensor measurements. The accessibility to
zone, time-slots, devices, and occupants (RFID measurement)
are modeled using ZA, T A, DA, and OA respectively.
Attack Technique: The principal task of the proposed attack
is to misinform the controller with tailored occupants’ location
and activity information. Hence, the attack can be considered
as a scheduling problem, where the attacker will compute
an optimal schedule of occupants (along with the activities)
throughout different zones at different time instances that
evade both the ADM and occupants. Eventually, the optimiza-
tion objective defined in Equation 17 is an NP-hard problem
(i.e., complexity O(|Z||T |)). Hence, it is not feasible to get
the optimal attack vectors in a viable time. SHATTER aims at
identifying sub-optimal solutions by optimizing the scheduling
problem in a shorter time window (I) and merging the results.
We will consider the schedule as an attack schedule throughout
the write-up.
(a) Attack Schedule Generation: In this process, the attacker

pre-computes the attack schedule based on his knowledge
of the control system and ADM. The goal of creating the
attack schedule is to maximize the energy cost in the time
horizon (I), in which the optimization is feasible.
Attack Schedule Goal:

∀t∈[1,|T |,I] maximize

t+I∑
t

GS̄
t (17)
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However, the following attack constraints must be main-
tained to create the attack schedule.

∀t∈T A∀o∈OA∃!z∈ZA S̄OT
t,o,z (18)

∀t∈T A∀o∈OA∀z∈ZA ¬S̄OT
t,o,z → ĒA

t−m,o,z

∧m = maxStay(t, o, z)
(19)

∀t∈T A∀o∈OA∀z∈ZA ĒE
t,o,z →

∃x∈T inRangeStay(t, o, z, ĒS
t−x ,o,z )

(20)

Here, two functions are introduced. The maxStay(.) func-
tion outcomes the maximum valid stay duration (without
alarming ADM) at a zone for an occupant given his/her
arrival time. On the other hand, the inRangeStay(.) func-
tion checks whether staying at a zone for an occupant
given his/her arrival time and stay duration is stealthy or
not. The attack schedule can be derived from the attacked
occupancy sensor measurements However, the attacker
needs to make sure that the occupants are scheduled to a
zone in every attack timeslot as shown in Equation 18. The
equation 19 requires that the attacker must schedule an
occupant to a different zone if keeping the occupant more
will alarm the ADM. Other than that the occupant can only
be scheduled to a different zone if the stay duration in the
current zone based on the arrival time is within an ADM
cluster as shown in Equation 20. Otherwise, scheduling
the occupant in a different zone will alarm the ADM.

(b) Real-timeAttack: The pre-computed attack schedule can
evade the ADM. However, to evade the occupants, the
real-time measurement manipulation and appliance trig-
gering decision need to be taken in real-time since the real-
time occupant behavior will be different than the attack
schedule. In real-time there will be two tasks - 1) using the
attack schedule to measure manipulation and 2) appliance
triggering attack. The former task requires misinforming
the controller’s IAQ and occupancy information according
to the attack schedule. However, the attack can be carried
out at a time-instances if the attacker has access to both
the actual occupant zone and the zone from the attack
schedule. The core idea behind the later task is that the
appliances will be triggered based on the activity reported
by the attack schedule, if and only if the occupant staying
in the current zone has not exceeded the ADM reported
minimum amount of time based on his/her arrival time.
The algorithm of the appliance triggering process is shown
in Algorithm 1, which sets a variable trig to be True
when adversarial manipulation is possible. The minStay(.)
function used in Algorithm 1outcomes the minimum valid
stay duration (without alarming ADM) at a zone for an
occupant given his/her arrival time.

V. CASE STUDY

In this section, we conduct empirical case studies to illus-
trate the working principle of the SHATTER framework in the
case of identifying stealthy attack vectors and corresponding
attack costs. To discuss the studies easily, we denote the

Algorithm 1: Appliance Triggering Decision.
1 Function ApplianceTriggeringDecision(R):
2 trig ← False;
3 arrivalT ime← 0;
4 thresh← 0;
5 Z ← set of all zones;
6 for t in Range(T ) do
7 for o in Range(O) do
8 zone← ∃z∈Z S̄t, o, zOT ;
9 if Et, o, zoneA then

10 thresh← minStay(t, o, zone);
arrivalT ime← t;

11 end
12 if t− arrivalT ime ≤ thresh and ¬SOT

t,o,zone

then
13 trig ← True;
14 end
15 end
16 end
17 return trig;
18 return

two occupants of our considered home system as Alice and
Bob and the intruder/attacker as Trudy. The occupancy/activity
information of the home occupants is taken from the ARAS
(Home A) dataset. The case study will be described using
Table III. The actual occupancy information in the table
is taken from day 4 (6 PM - 6:09 PM). We consider a
greedy attack strategy (i.e., demonstrated in Algorithm 2.)
as the baseline to compare the SHATTER-generated dynamic
schedule. In the greedy strategy, we consider that the attacker
will schedule the occupant to the zone and activity, which is
mapped to the highest cost until the maximum possible stay
duration at that particular zone and time.

Algorithm 2: Greedy Schedule Generation.
1 Function GreedyScheduleGeneration(R):
2 arrivalT ime← 0;
3 while arrivalT ime < length(T ) do
4 for o ∈ Range(O) do
5 t← arrivalT ime;
6 zone← z | S̄t,o,z ∧ GS̄t is maximized;

duration← maxStay(t, o, zone);
7 for d ∈ Range(duration) do
8 S̄t, o, z ← True;
9 end

10 arrivalT ime← arrivalT ime+ duration;
11 end
12 end
13 return

The ARAS zones- Bedroom (Z-1), Livingroom (Z-2),
Kitchen (Z-3), and Bathroom (Z-4) incur 0.13¢, 0.135¢, 2.69¢,
0.79¢ respectively for HVAC control of single occupant
presence doing the most intensive task in the corresponding
zones, while the appliance triggering costs 0.197¢, 0.2096¢,
1.67¢, and 0.83¢ respectively. Hence, the control cost for
Alice is 1.6¢, while there is no actual benign control cost since
Bob was outside the home in all considered 10 slots. The total
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TABLE III
CASE STUDY

Schedule Occupant Time 6:00 PM 6:01 PM 6:02 PM 6:03 PM 6:04 PM 6:05 PM 6:06 PM 6:07 PM 6:08 PM 6:09 PM
Slot (t) 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089

Actual Alice 2 2 2 2 2 2 2 2 2 2
Bob 0 0 0 0 0 0 0 0 0 0

Greedy Alice 2 2 2 2 2 2 2 2 2 2
Bob 0 0 0 0 0 0 0 0 0 0

SHATTER Alice 2 2 2 2 2 2 3 3 4 4
Bob 2 2 2 2 2 2 2 2 2 2

Range
Threshold

Alice [9 - 30] [10 - 27] [10 - 25] [10 - 22] [11 - 16] [11 - 19] [11 - 13] [] [75 - 75] [66 - 75]
Bob [5-11] [9-18] [5-11] [9-18] [16-19] [9-18] [25-31] [8-18] [9-18] [1-9]

Trigger Status Alice False False False False False False True True True False
Bob True True True True True False False False False False

(a)

Bedroom
Zone

12''

6'' 6'' 6''

Kitchen
Zone Bathroom

Zone

Livingroom
Zone

Temperature
Sensor

Servo
Motor

5V 5W
LED Bulb

(b)
Fig. 8. (a) Demonstrates a testbed instance, when Alice is showering in the
bathroom zone, and Bob is taking nap in the Bedroom zone, where (b) shows
the benign control scenario, where bathroom and bedroom zone vents are
open and is getting air supply to neutralize the added heat generated from the
two occupants, corresponding zone lights and the smart bathtub appliance.

Occupancy
Sensor (PIR) 

Temperature
Sensor 

 (DHT 22)

CO2 Sensor
(CCS811)

Control and
Anomaly Detection

Rules 

Attacker
(Kali Linux OS) 

Sensor Node 
(Arduino Mega 2560) 

WiFi Module
(ESP 8266) 

Access Point
(Router) 

MQTT Broker
(Raspberry Pi) 

Fig. 9. Prototype testbed architecture.

greedy attack cost for Alice is 1.38¢, while the total SHATTER
attack cost for her is 10.93¢(7.47¢for HVAC control and
3.16¢for appliance triggering). Hence, the SHATTER attack
cost is 8 times than greedy cost for Alice. Similarly, for
Bob total SHATTER attack cost is 1.5¢. The trigger status
in Table III is calculated from Algorithm 1. The primary
reason behind the greedy scheduling not performing similarly
to the SHATTER attack is that at 5.32 PM, the greedy attack
schedule chooses the most rewarding zone (i.e., Kitchen).
Consequently, to be consistent with the anomaly detection
model, the greedy attack schedule needs to choose the outside
zone for Bob, which is the same as his current zone. Since
the occupant stays at the exact location as the attack schedule
as in Table III, Trudy cannot trigger any other devices in the
zones to avoid suspicion of the occupants. On the other hand,
SHATTER looks for long-term rewards in a specified time
horizon. Accordingly, the SHATTER framework outperforms
the greedy approach.

VI. TESTBED-BASED VALIDATION

We build a prototype testbed for validating our proposed
framework. For testbed implementation, we consider that the

attacker has full access to measurements and can access the
devices. The occupants and appliances are modeled using
5V, 5W led light bulbs in the testbed. The testbed zones
are considered from the ARAS testbed. We scaled down the
testbed by the scale (=24) in all dimensions. The energy
consumption of the occupants and the appliances are scaled
accordingly. Our experimentation shows that the temperature
and ventilation of the testbed DCHVAC control modeling are
not linear. The primary reason behind this is that the zones
in the testbed are not completely insulated. For learning the
dynamics of the IAQ in the testbed, we trained a regression
model for estimating the airflow and heat generation given the
temperature. The temperature of the zones is measured using
the DHT-22 sensor. We did not consider pollutant generation
for the testbed. The emulation of the different activities is car-
ried out by turning on the led lights for a different amount of
time. Similarly, the DCHVAC is mimicked by turning on our
1.4 CFM supply fans for a different amount of time identified
by the trained polynomial regression model (degree = 2). Such
kind of modeling experienced less than 2% error compared to
the testbed measurements. To discuss the studies easily, we
denote the two occupants of our considered home system as
Alice and Bob and the intruder/attacker as Trudy. Figure 8(b)
shows the benign control situation while at the SHATTER-
identified attack scenario. However, in the attacked scenario,
the control system gets misinformed that Alice and Bob are
cooking without getting alarmed (i.e., ADM is bypassed),
so chill air is supplied in the kitchen zone. Eventually, the
kitchen zone got more chilled compared to the setpoint letting
temperature increment in the occupied zones and energy cost
increment. We conducted experimentation by taking 1-hour
measurements from the ARAS dataset (house-A). Figure 9
shows our prototype architecture. We used openHAB as our
supervisory control and data acquisition (SCADA) system and
attacked the raspberry pi-based MQTT broker to imitate the
attack and measure the attack impact. Finally, we found a 78%
increment in energy consumption after the experimentation.
Our attack approach here aims at real-time modification of
MQTT protocol network messages. To carry out the attack,
we employ the Polymorph and the Scapy frameworks. The
considered attack is feasible to be launched primarily with a
$35 Raspberry Pi 2 device, which can play the role of a sniffer,
MQTT broker, and also packet crafter [36], [26].
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TABLE IV
COMPARISON OF ADMS BASED ON THE ATTACKER’S KNOWLEDGE.

ADM Attacker’s
Knowledge Dataset Accu-

racy
Prec-
ision Recall F1-

Score

DBSCAN

All
Data

HAO1 0.75 0.83 0.63 0.71
HAO2 0.83 0.75 1.0 0.85
HAO1 0.73 0.71 0.76 0.73
HAO2 0.67 0.62 0.89 0.73

Partial
Data

HAO1 0.67 0.64 0.78 0.70
HAO2 0.63 0.57 1.0 0.73
HBO1 0.61 0.56 0.70 0.38
HBO2 0.56 0.54 0.89 0.67

K-Means
Clustering

All
Data

HAO1 0.71 0.77 0.6 0.67
HAO2 0.93 0.87 1 0.93
HBO1 0.76 0.8 0.69 0.74
HBO2 0.88 0.82 0.96 0.88

Partial
Data

HAO1 0.64 0.6 0.87 0.70
HAO2 0.71 0.62 1.0 0.77
HBO1 0.60 0.56 0.88 0.68
HBO2 0.67 0.62 0.89 0.73

VII. EVALUATION

This section presents the findings from the considered smart
home control model and the feasibility of implementing our
proposed framework. We present the SHATTER’s evaluation
results considering the following set of research questions.

RQ1 What is ADM’s contribution to reducing stealthy FDI
attacks? Section VII-A)

RQ2 What is the Performance of the SHATTER-generated
Attack Schedule? Section VII-B)

RQ3 What is the contribution of an activity monitoring sys-
tem in the case of aggravating attack impact? (Section VII-C)

RQ4 What are the framework findings in assessing the
proposed attack impact with variable attacker’s capability?
(Section VII-D)

RQ5 How feasible is implementing the proposed frame-
work for a scalable smart home system/other CPS domain?
(Section VII-E)

A. Evaluation of Anomaly Detection Model

As we discussed, stealthy FDI attacks can help knowledge-
able adversaries to bypass the ADM and make the system vul-
nerable. Hence, assessing the system’s ADM against stealthy
FDI attacks is mandatory from a security perspective. Here, we
compare the SHATTER-considered ADM to a state-of-the-art
framework (i.e., BIoTA) that does not consider a robust ADM
but rather considers some verification rules. The contribution
of ADM is evaluated based on the reduction of stealthy
FDI attack impact. In this attack impact evaluation process,
we do not consider the triggering of the smart appliances.
A comprehensive performance evaluation of the considered
ADMs is provided in Table IV. The results indicate that other
than the HAO1 dataset, K-Means clustering outperformed
DBSCAN-based ADM. We generate the anomalous/attack
data using the BIoTA framework for this evaluation process.
We consider variable attackers’ knowledge ADM assessment,
i.e., the attacker has either access to all day’s occupancy,
activity, and sensor measurement data used for ADM training
(all data) or 50% of them (partial data).

TABLE V
COMPARISON IN BETWEEN SHATTER ATTACK IMPACT WITH BIOTA

FRAMEWORK AND GREEDY ATTACK SCHEDULING APPROACH.

Framework/
Approach ADM Attacker’s

Knowledge

House A
Energy
Cost ($)

House B
Energy
Cost ($)

BIoTA Rules-based - 775.83 518.50

Greedy
DBSCAN All Data 517.51 307.06

Partial Data 447.02 148.39
K-Means
Clustering

All Data 513.92 220.37
Partial Data 30.4.90 104.61

SHATTER
DBSCAN All Data 549.58 299.69

Partial Data 461.01 132.95
K-Means
Clustering

All Data 745.04 454.61
Partial Data 361.15 434.09

Table V shows the cost comparison between the BIoTA,
greedy attack scheduling, and our proposed SHATTER frame-
work for both ARAS Houses A and B datasets. BIoTA-
identified attack vectors’ costs are at most 1.5 times higher
than the SHATTER-identified attack vectors. However, our
considered ADM identified (60-100)% attack vectors identified
by the BIoTA framework as anomalies. Hence, we can con-
clude that the BIoTA-identified attack vectors are not stealthy
for the considered ADMs. In our proposed framework, we
consider a robust ADM to synthesize critical and hazardous
attack vectors that can evade modern control systems and thus
obtain a defense guide for secure control architecture.

There is an interesting insight from the results shown in
Table V. It seems that the attack impact of DBSCAN-based
ADM is lower than the K-Means clustering-based ADM al-
though the latter mostly showed better performance (Table IV).
The attack impact of the DBSCAN-based system can be as
much as 35% lower than that of the K-means clustering-based
ADM. The reason behind this is that the attacks obtained from
BIoTA were very naive and maintained a large margin from the
benign data distribution. Hence, the BIoTA-identified attacks
are not a good choice for ADM model assessment. Since
K-means clustering clusters all the training samples, unlike
DBSCAN, which removes the noise points, the cluster areas
were unnecessarily large. Accordingly, the k-means cluster-
based ADM failed to capture the zero-day attacks found by
SHATTER. From this evaluation, it can be inferred that the
SHATTER-identified attack vectors are more appropriate to
assess ADMs than the state-of-the-art. It needs to be noted that
the purpose of this work is not to propose an optimal ADM.
The developed ADM is used for the experimentation and
evaluation of SHATTER. The framework is flexible enough
to consider any ADM to assess its data-driven security and
robustness against stealthy FDI/ integrity attacks in IoT-based
control systems. In the rest of the evaluation, we will use
DBSCAN-based ADM as it performs better.

B. Evaluation of SHATTER-generated Attack Schedule

The SHATTER framework generates an optimal attack
schedule to misinform the controller with occupancy infor-
mation at different zones. As discussed before, the considered
scheduling is an NP-hard problem. To get a polynomial time
solution, we consider window-based dynamic optimization.
For the experimentation, we optimize each at every 10 slots
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Fig. 10. Control cost comparison with or without appliance triggering attacks
for (a) ARAS House A (b) ARAS House B considering DBSCAN ADM.

(a slot corresponds to 1 minute sampling time) to get the final
attack schedule. However, throughout the day, there can be
1440 possible slots (considering the sampling time to be 1
minute). Reducing sampling time will make the scheduling
problem even more critical, in turn, a robust control system.
Our experimentation suggests that a SHATTER-generated at-
tack schedule can incur significantly higher costs than a greedy
attack scheduling strategy. From Table V, we can see that the
proposed attack scheduling is incurring up to $32.07 more
cost (i.e., for DBSCAN-based ADM of House A) throughout
a month compared to the greedy attack approach, where the
benign control cost was $244.69. The higher attack cost for
the greedy attack schedule compared to the SHATTER attack
schedule supports the essence of dynamic attack scheduling.
The SHATTER-identified attack vector would create more
impact if the optimization window was larger.

C. Evaluation of Activity Monitoring System

In this evaluation, we show how the knowledge of activity
information can help the adversaries to further increase the
smart home HVAC energy cost. With the knowledge of activity
information, a stealthy appliance-triggering attack is possible.
Without the activity information, an attacker can maliciously
activate an appliances that can create suspicion among the
occupants even after evading the ADM. In the earlier evalu-
ations, we did not consider any appliance-triggering attacks.
The spikes in Figure 10 indicate a significant rise in control
cost through appliance-triggering attacks. With full adversarial
access, such an attack can increase the cost by $124.93
(+22.73%) and $60.03 (+20.03%), respectively, for ARAS
Houses A and B.

D. Attack Impact Evaluation by Varying Attacker’s Capability

We evaluate the attack impact with different attackers’ capa-
bilities. In this evaluation, we analyze the appliance-triggering
attack impact with variable measurement and appliance access.
In Table VI, we show the attack impact considering that the
adversary has accessibility to sensor measurements of different
zones and can trigger all appliances. The evaluation shows
that the attacker can create a significant attack impact by
having access to 3 and 4 zones. However, access to 2 zones
reduces the attack impact drastically (3.7 times in ARAS
House A and 12.22 times in House B). Hence, SHATTER
proposes a successful defense strategy. In Table VII, we
show the attack impact considering that the adversary has

TABLE VI
APPLIANCE TRIGGERING ATTACK IMPACT WITH VARIOUS ZONE

MEASUREMENT ACCESS CAPABILITY

Number of
Accessible Zone

House A
Energy Cost ($)

House B
Energy Cost ($)

4 Zones 124.93 60.03
3 Zones 117.42 31.91
2 Zones 33.74 4.91

TABLE VII
APPLIANCE TRIGGERING ATTACK IMPACT WITH VARIOUS APPLIANCE

TRIGGERING CAPABILITY

Number of
Accessible Appliances

House A
Energy Cost ($)

House B
Energy Cost ($)

13 Appliances 124.93 60.03
8 Appliances 117.89 51.16
3 Appliances 93.05 50.82
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Fig. 11. Scalability analysis based on (a) time horizon, (b) horizontal scaling.

accessibility to appliances of different zones and can inject
false measurements in all zone sensor measurements. The
results show that even with access to 3 appliances (out of 13),
a significant attack impact can be created in both houses. The
analysis from Tables VI and VII suggests that the defense
mechanism should focus on securing occupancy and IAQ
measurements compared to appliances.

E. Scalability Analysis of SHATTER

Identification of an optimal stealthy attack vector through
the proposed attack technique evading the complex ADM is
an NP-hard problem. The optimal attack vector identification
requires solving an optimization problem of 1440 (1 minute
sampling time for all measurements) lookback time. We evalu-
ate the scalability of the SHATTER framework by varying the
time horizon (i.e., lookback time). The increase in the number
of zones multiplies the number of constraints. Fig. 11(a) shows
scalability analysis based on different lookback times, which
affirms the exponential growth of execution time. However,
horizontal scaling (i.e., increased number of zones) raises the
number of constraints linearly. Hence, the execution time for
an increased number of zone is growing linearly, as shown in
Figure 11(b) (lookback = 10).

VIII. RELATED WORK

In this section, we compare our proposed attack analyzer
with comparable literature. Although the work mainly focuses
on attack analysis, we provide a comprehensive literature
review of the control systems, ADM, and attack analytics.

A. Control Systems and Anomaly Detection

Traditionally, closed-loop control systems have relied on
physics-based models of dynamic systems for optimal control
decisions. These models are mathematically analyzed. How-
ever, in recent times, ML is increasingly used to develop

11



controllers. Since ML models are integrated into controllers as
a classifier to identify control actions or as a validator to detect
faulty/anomalous/attacked data [37], [38], [39]. Although ML-
based methods are adaptable and robust against measurement
errors and noises, they lack systematic mathematical analysis
and are often viewed as black-box methods.

There has been extensive research into developing ADMs, in
the context of smart homes and related domains. For instance,
Pan et al. introduced an ADM that utilizes a context-aware
BACnet data structure for building automation and control
networks [40]. However, the ADM did not prove effective in
reducing false-positive alarms. Another research developed a
lightweight rule-based ADM for smart home/building control
systems [41]. Analyzing BIoTA, we have discovered that rules-
based ADMs leave backdoors to be exploited, which makes
them vulnerable to zero-day attacks. In one of our previous
works, we developed an ensembled unsupervised ML model
for detecting attacks from the BIoTA framework [42]. The per-
formance was extensively good although only getting trained
with benign data, we have already experimented that most
of the BIoTA-identified attacks are trivial. The definition of
performance from different ADM-related research is question-
able. The reason is that, in most cases, the performance of the
models is evaluated based on some known attack or concrete
decision boundary around the known benign samples. Hence,
the vulnerability of those models can be easily exploited.
Therefore, we focus on critical feature selection for model
training.

B. Attack Analytics

Development of attack analytics has always been a concern
for safety-critical CPSs. The existing research can be broadly
classified into regulation, rules, and ML-based analytics.
Regulation and Rules-based Analytics: Stellios et al. in-
troduced a new approach to identify and evaluate attack
paths against critical IoT systems based on assessing risks,
utilizing existing tools (i.e., CVE, CVSS) [8]. Akatyev et
al. evaluated potential threats for futuristic smart homes with
multiple diverse components and advanced decision-making
abilities [10]. Casola et al. proposed an automated method
for threat modeling and risk assessment based on a threat
catalog created during the FP7 SPECS project, which targeted
the communication protocol and software elements of IoT
systems [43]. The analysis of security threats and resiliency
in rule-based IoT systems has been thoroughly researched
and explored in previous studies. Mohsin et al. developed a
formal security analysis framework for IoT-based systems by
analyzing network topology and interdependencies between
system components [11], [12]. This framework can identify
potential attack vectors from integrity and availability types
of attacks and assess the system’s resiliency against attackers
with varying accessibility and capabilities. However, these
proposed frameworks are limited to analyzing the security of
rules-based IoT systems. Analysis of such systems does not
require investigating historical data or maintaining time-series

patterns. SHATTER can find hazardous attack vectors that can
evade sophisticated defense tools.
ML-based Analytics: Solving constraints in ML-based sys-
tems is much more complex than in rule-based systems, and
as a result, formal analysis of deep neural network-based ML
models has become a focus of contemporary research. Various
effective tools, including Reluplex, Sherlock, and Marabou,
have been developed for verifying ML models [14], [15], [16].
Researchers have attempted to identify issues and analyze the
behavior of ML-based systems in uncertain environments us-
ing formal methods. Souri et al. formally verified a hybrid ML-
based approach for fault prediction in IoT applications [13].
However, unlike these verification approaches, the proposed
framework can synthesize attack vectors contemplating activ-
ity recognition, appliance triggering, and ML-based ADMs,
producing useful attack vectors to assess and propose defense
systems.

IX. CONCLUSION

In this work, we propose a novel framework that analyzes
the threat space of a smart IoT-enabled home control system,
efficiently extracting ADM rules. We evaluate the proposed
attack analyzer’s effectiveness on the ARAS dataset. More-
over, we also build a prototype testbed for validating the
framework in real-life settings. Experimental analysis using
the verification dataset and validation testbed exhibits the
effectiveness of the proposed framework. SHATTER gener-
ates sub-optimal attack vectors by creating optimal attack
schedules in constrained time horizons. The results show that
SHATTER-generated attack vectors can increase a home’s en-
ergy consumption by more than 20% by leveraging appliance-
triggered attacks. Some modern homes generate (i.e., using
generators or renewable energy sources) and store energy, us-
ing batteries to reduce peak hour energy expense. Based on the
capacity of the energy storage, excess energy can be produced,
which has not been modeled by our proposed framework. If
there is excess energy production, the home can be viewed
as a microgrid, which sells the excess energy to the grid.
Even though SHATTER-identified attacks will unquestionably
decrease earnings compared to a benign operating condition,
the attack’s impact in this scenario will be distinct and needs
attention. In our future attack modeling, we will factor in
renewable power sources.
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