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Abstract—Optimistic rollup has emerged as a promising
Layer 2 (L2) scaling solution for blockchain; however, its existing
protocols are vulnerable to front/back-running activities, where
an opportunistic rollup operator can strategically alter the trans-
actions’ order to create an arbitrage opportunity. Specifically, in
the limited edition ERC-721 standardized non-fungible tokens
(NFTs), the re-ordering of transactions introduces a lucrative
threat landscape due to its scarcity-driven pricing and market
volatility. In this work, we introduce PAROLE, a novel attack
technique on optimistic rollup systems, where an adversarial
aggregator re-orders the NFT transactions in an optimal way,
leveraging model-free deep reinforcement learning (DRL) to
maximize the balance of a target account. We create our own NFT
called the “PAROLE Token” (PT) and deploy it in the OpenSea
marketplace via Optimism Goerli to validate the attack impact.
Furthermore, we collect NFT snapshots from rollup mainchains
to analyze the impact in real-world NFT marketplaces.

Index Terms—Blockchain, optimistic rollups, profitable arbi-
trage, mempool, non-fungible tokens

I. INTRODUCTION

Cryptocurrencies and blockchain technology have revolu-
tionized the financial industry, with remarkable efficiencies
and applications from 2009 to the present day [1], [2]. How-
ever, mass adoption remains unattainable since no existing
blockchain can efficiently manage global-scale operations [3],
[4]. In the rapidly evolving landscape of blockchain technolo-
gies, optimistic rollup has emerged as a pioneering innovation,
which presents a Layer 2 (L2) scaling solution. Optimistic
rollup shifts a significant portion of transaction processing and
smart contract execution off the main blockchain, similar to
the state-of-the-art L2 scaling solutions, e.g., side chains [5],
plasma [6], payment channel networks [7], [8], etc. This L2 so-
lution optimizes efficiency by batching transactions, reducing
on-chain operations, and minimizing transaction fees. While
it enhances the overall throughput, the confirmation time also
decreases, making blockchain applications more cost-effective
for users. This approach maintains a robust level of security by
leveraging the security model of the underlying main chain [9].

Although perceived as a solution for quicker transaction pro-
cessing, rollup has centralization concerns related to the entity
called “sequencer,” which is responsible for transaction order-
ing [10]. This centralization grants the sequencer significant
power, enabling it to potentially censor transactions and exploit
maximal extractable value (MEV), impacting users financially.
Moreover, the reliance on a central sequencer poses a systemic
risk — if it fails, the entire L2 rollup system can collapse.

Aggregators in the L2 rollup ecosystem can potentially address
some of the concerns associated with a single sequencer, who
collect and bundle transactions from multiple sources (ideally
from Bedrock’s [11] Mempool) before submitting them to the
Ethereum main chain [12]. This approach aims to introduce a
degree of decentralization and mitigate the concentration.

However, this distributed solution is not immune to vul-
nerabilities, particularly within its transaction processing pro-
tocols. A significant risk is the potential for front-running
and back-running activities, allowing opportunistic aggrega-
tors to manipulate transaction orders for profitable arbitrage
opportunities tailored to specific users. While aggregators are
expected to process transactions based on their base and
priority fees [13], they have the flexibility to arrange them
differently if sufficient incentives are present. We exploit this
vulnerability and investigate the kinds of transactions that
frequently provide arbitrage opportunities.

Arbitrage malpractice within the decentralized ecosystem is
a well-established phenomenon. Mclaughlin et al. identified
3.8 million arbitrages in the Ethereum decentralized exchange
(DEXes) ecosystem, generating $321 million in profit [14].
Zhou et al. introduced an SMT-based automatic profit gen-
eration tool for decentralized finance (DeFi) ecosystem [15],
which had an estimated average weekly revenue of 72.44
ETH, demonstrating its effectiveness in arbitrage and complex
settings. Wang et al. presented a theoretical framework for
analyzing cyclic arbitrages in DEXes, which revealed that
traders executed 292,606 cyclic arbitrages, exploiting over
$138 million in revenue over 11 months [16].

While ERC-20 tokens have been extensively studied for
predatory trading practices, the realm of ERC-721, known as
the non-fungible tokens (NFTs), lacks sufficient attention and
research despite its high-value assets. A study [17] revealed
that as high as 3.93% of addresses, processing 2.04% of sale
transactions, trigger suspicions of market abuse through illicit
trading patterns of NFTs. For instance, an individual generated
$100,000 through speculative trading of an NFT and approxi-
mately $8,000 through the operation of an arbitrage bot [18].
In another instance, a sniper bot executed a flashloan attack
by front-running a bid transaction on an NFT, securing 26.25
ETH [19]. Along with this trend of negligence to unethical
behaviors, the NFT market is susceptible to volatile price
spikes [20], due to its uniqueness and scarcity. Specifically,
in the case of the limited edition NFTs, whose value grows
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proportional to its digital scarcity [21], the arbitrage opportu-
nity through front/back runnings becomes more prominent.

Exploiting the vulnerability of the optimistic rollup systems
and potential arbitrage scope within limited edition NFT mar-
kets, we propose PAROLE (Profitable Arbitrage in Optimistic
Rollup with ERC-721 token transactions) attack, where an
adversarial aggregator colludes with a user who participates
in NFT transactions. The attacker aggregator checks for ar-
bitrage opportunities with the set of transactions he receives
from Bedrock’s Mempool and re-orders the sequence in a
way that maximizes the colluding user’s balance. However,
given the nature of the limited edition NFT market and the
non-linear patterns of their pricing, traditional deterministic
trading algorithms will fail, both to capture the economic
dynamics and produce a profitable order. On the other hand,
deep reinforcement learning (DRL) is well-suited for solving
problems involving decision-making, and sequential actions,
where an agent needs to learn optimal strategies through
trial and error [22]. Due to DRL’s capacity to adapt to
dynamic environments, handle complex decision-making, and
learn from experience, it has become a very effective tool
for solving non-linear optimization problems. Thus, we utilize
DRL within the attack framework to optimize the re-ordering
task and maximize the profit for the intended colluding user.

Our primary contributions in this work are fourfold:
• We identify an existing vulnerability of an optimistic

rollup system and propose a novel attack technique with
limited edition NFT transactions.

• We introduce the GENTRANSEQ module, designed to
determine the most effective transaction order to optimize
the attack advantages by leveraging DRL.

• We create our own NFT called the ParoleToken (PT) [23],
which is deployed at the OpenSea testnet via Optimism
Goerli. We perform various token transactions using PT
and conducted simulations based on its data and traffic
to validate the effectiveness and impact of the attack.

• We collected NFT snapshots from the optimistic rollups
(Arbitrum and Optimism) and analyzed them to further
validate the attack impact in a real-world NFT market.

We discuss necessary preliminary information in Section II.
The related works are discussed in Section III. We introduce
our proposed PAROLE attack in Section IV. In Section V, we
discuss the technical details of the attack. We analyze three
case studies in VI. In Section VII, we explain the empirical
analysis and findings. Finally, we discuss a potential defense
technique against the PAROLE attack in Section VIII. At last,
we conclude the work in Section IX.

II. BACKGROUND

In this section, we will discuss a few preliminary concepts
that will help explain the proposed PAROLE attack later.

A. Optimistic Rollup

Blockchain systems currently fall significantly short in
providing a service quality equivalent to centralized systems,
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Fig. 1. Optimistic rollup workflow.

especially concerning transactions per second [24], [25]. Opti-
mistic rollup is an L2 scaling solution for blockchain networks
that addresses scalability concerns by processing transactions
off-chain and ensuring their validity through an optimistic
approach backed by a challenge mechanism [26]. Rollup
systems are deployed using Layer 1 (L1) smart contracts,
where participants, such as aggregators and verifiers, engage
with this contract. The basic workflow of optimistic rollups is
illustrated in Figure 1, which involves several steps. At first,
a user will need L2 tokens (tL2) to interact with the rollup
operators, which can be exchanged with other cryptocurrencies
(CL1) via the L1 smart contract. The L2 transactions are sent
to Bedrock’s Mempool, from where the aggregators collect
and execute them. A user can send his transactions to the
Bedrock’s Mempool directly (User 1 sending TX 1,tL2 ), or
he can send the transaction via the L1 smart contract (User
2 sending TX 2,CL1 ). In this work, we primarily consider the
second approach to generalize the proposed attack for L1 NFT
transactions. Then, the aggregator processes the transactions,
generates a cryptographic aggregate of these transactions along
with the Merkle state root of the L2 chain, and submits them
to the verifiers. The verifiers on L1 monitor these submissions
and can raise challenges if they detect any invalid or fraudulent
transactions within the batch. A challenge period follows, dur-
ing which the fraud-proof is inspected to dispute the optimistic
assumption. The disputed transactions are reverted if fraud
is proven, and the fraudster loses a bonded security deposit.
However, if no valid challenge is raised, the transactions are
considered finalized and are added to blockchain [27].

B. Ethereum Tokens: ERC-20 and ERC-721

Ethereum tokens are digital assets created and managed on
the Ethereum blockchain through the use of smart contracts.
While resembling the cryptocurrency coins, the tokens lack
an independent blockchain of their own; instead, they are
constructed atop an existing one [28]. The predominant stan-
dard, ERC-20, facilitates the creation of fungible tokens, which
are interchangeable and widely employed for purposes like
crowdfunding through initial coin offerings and representing
ownership of various assets [29]. The ERC-721 standard is a
set of rules and protocols for the creation and management of
NFTs. Unlike ERC-20 tokens, which can be exchanged on a
one-to-one basis, ERC-721 tokens are non-fungible, meaning

2



EnvironmentQ Network
State

Target Network
C

op
y 

ea
ch

N
 s

te
ps

Replay Memory
Buffer

Loss calculation of Q value

Action: (ARGmaxQ(
state,action|wights))

Store: (state,action,
reward,next state)

next state (state,
action)

reward

Q
(s

ta
te

,
ac

tio
n|

w
ig

ht
s)ARGmaxQ

(next state,
next action|
wightstarget) G

ra
di

en
t

w.
r.t

 lo
ss

Deep Reinforcement Learning

Fig. 2. DQN architecture.

each token is distinct and cannot be exchanged on a like-for-
like basis, rather there will at least be a price difference [20].
The ERC-721 standard ensures that each token has a unique
identifier, making it easily distinguishable from other tokens,
and includes features for managing ownership, transferring
tokens, and retrieving token metadata.

C. Reinforcement Learning

Reinforcement Learning (RL) is a type of machine learning
paradigm where an agent learns to make decisions by inter-
acting with an environment [30]. The agent takes actions in
the environment, receives feedback in the form of rewards or
punishments, and uses this information to improve its decision-
making over time. The goal of the agent is to learn a policy, a
mapping from states to actions, that maximizes the cumulative
expected reward [31]. RL algorithms can be categorized into
model-free and model-based approaches, where model-free
methods, like Q-learning, directly learn the optimal policy
or value function from the data. DRL combines RL with
deep learning, using neural networks to approximate complex
policies or value functions [32]. Although a significant portion
of DRL research has been focused on applications in video
games and simulated control scenarios, DRL has demon-
strated potential in acquiring sophisticated real-world skills
(i.e., trading [33]). Unlike traditional Q-learning, where an
agent manages a Q-table, the DRL algorithm deep Q-network
(DQN) utilizes a neural network (Q-network) for learning.
This approach, effective in complex real-world environments,
is illustrated in Figure 2. To train the Q-network, the agent’s
experiences are stored as training data in a repository known as
the replay memory buffer. To enhance the stability of learning,
a supplementary neural network, called the ‘Target network,’ is
included in the DQN framework. Weights from the Q-network
are periodically copied to the target network, and the latter
predicts future Q-values for subsequent states, contributing to
the loss calculation in the Q-network’s predictions.

III. RELATED WORK

The emergence of MEV in DeFi is becoming more promi-
nent [34], where opportunistic traders secure better prices for
their trades and profit by causing the victim’s trade to execute

at a disadvantageous price. Numerous studies explore various
high-frequency trading strategies for ERC-20 tokens. Research
by Qin et al. quantified blockchain extractable value (BEV) in
DeFi smart contracts [35], yielding $540.54M in profit over
32 months. Bartoletti et al. proposed an Automated Market
Makers (AMMs) attack strategy [36], exploiting transaction-
ordering issues. Frontrunning, a prevalent adversarial strategy
in DEXes, was explored by Daian et al. [37] and Eskandari
et al. [38], highlighting risks in decentralized applications
(DApps) and proposing mitigating strategies. Zhou et al.
presented an AMM defense strategy, unifying multiple AMMs
for security and financial benefits [39]. Another noteworthy
attack technique is Cryptocurrency pump and dump (CPD),
which involves manipulating cryptocurrency prices through
false promotions, creating a temporary surge (pump) to attract
unsuspecting investors. This is followed by a quick sell-
off (dump) by orchestrators to capitalize on inflated prices,
leading to significant losses for buyers. Xu et al. conducted an
empirical analysis of 412 pump-and-dump events, developing
a predictive model with high precision [40]. Gandal et al.
exposed deceptive activity on the Mt. Gox Bitcoin exchange
(revealing 600,000 fraudulently acquired bitcoins), resulting
in a spike in the USD-BTC exchange rate in late 2013 [41].
Kamps et al. used anomaly detection to identify potential
pump-and-dump activities, revealing clustering on specific ex-
changes and coins, contributing to research in crime prevention
for this emerging fraud problem [42]. None of these works,
however, concentrated on NFTs, where the dynamics of the
economic behavior resemble real-world assets.

The manipulation of ERC-721 token markets is becoming
more widespread with the emergence of various innovative
attack strategies. One of the more common techniques is the
NFT rug pull (NRP), where the creators or sellers abandon
an NFT project after attracting attention and investments. Roy
et al. found that over 36% of promoted projects on Twitter
were fraudulent, with a majority involving bot activity [43].
To address these issues, a machine learning classifier tool
was introduced to proactively detect 382 new fraudulent NFT
projects. Huang et al. conducted a comprehensive study of
NRPs [44], identifying 253 cases and implementing a rule-
based method to flag 7,487 rug pulls. Sharma et al. analyzed
structural and behavioral properties of NRPs, examining 758
cases across 10 NFT marketplaces [45].

Another prevalent attack strategy is the NFT Ponzi
schemes, where returns to earlier investors come from the
contributions of new investors rather than business profits.
Bartoletti et al. discussed the transition of Ponzi schemes from
offline to digital spaces, particularly their adaptation to cryp-
tocurrency platforms like Ethereum [46]. Chen et al. proposed
a detection approach and an advanced classification model,
identifying over 500 smart Ponzi schemes on Ethereum [47].

There exist other unethical activities in NFT trading, such
as wash trading on the Ethereum NFT market, which affects
5.66% of all NFT collections with a total artificial volume of
$3.4 billion, emphasizing the profitability and prevalence of
wash trading and suggesting the need for protective mecha-
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nisms in NFT markets [48]. Bonifazi et al. provide a novel
“ex-post” analysis of wash trading activities in the NFT
market, offering insights into the profitability of past illicit
actions [49]. Serneels et al. proposed 3 innovative strategies for
flagging suspicious wash trading activities in the NFT market,
addressing the challenge of distorted token valuations [50]. Liu
et al. proposed an approach to detect wash trading transactions
using an algorithm by AnChain.AI [51], while Wen et al.
introduced NFTDisk [52], a novel visualization tool designed
for investors to identify wash trading activities, offering an
intuitive approach through radial and flow-based visualization.

None of the above-discussed works exploited the vul-
nerability of optimistic rollup transaction processing, where
an adversarial aggregator could alter the execution order of
limited edition NFT transactions, providing illicit advantages
to a user, without resorting to NFT market manipulation as
seen in earlier research.

In terms of defense against transaction order manipulation
attacks in the blockchain system, a range of approaches exist.
Optimized trade execution methods, such as A2MM [39],
offer targeted protection against known attacks like sandwich
attacks by optimizing transaction parameters. However, their
applicability is limited to specific applications, necessitating
broader mitigation approaches. Professional Market Maker
(PMM) models [53] introduce fairness to DEXes but face chal-
lenges in security and feasibility. Trusted third-party ordering
schemes like Flashbots [54] and Gnosis [55] Protocol prioritize
privacy and efficiency but compromise decentralization and
security by relying on trusted entities. The eUTXO model [56]
prevents front-running attempts but struggles with throughput
limitations. While each approach offers benefits, none of them
consider the threat of an adversarial validator (i.e., aggregator),

who has the sequencing preference before the execution of the
transaction. As such, these approaches lack the capability to
detect and prevent sophisticated manipulation orchestrated by
adversarial aggregators in L2 optimistic rollup systems.

IV. PAROLE ATTACK: KEY IDEA

Here, we explain the main theoretical idea of the attack.

A. Theoretical Definition of PAROLE

The PAROLE attack occurs through a collusion between
an adversarial aggregator and an illicitly favored user (IFU),
where the inability of Bedrock’s Mempool in ensuring MEV
resilient transaction sequencing is exploited. The Bedrock’s
Mempool serves as a temporary storage space for pending
transactions before they are validated and added to the L2
chain. The legacy network generates a block for each trans-
action, processing them in a first-come-first-serve order, while
Bedrock creates blocks at fixed intervals, necessitating a Mem-
pool to hold pending transactions until they’re incorporated
into a block. Since Bedrock’s Mempool is kept private to
mitigate MEV [13], an adversarial aggregator does not have
the opportunity to choose the eligible set of transactions from
the Mempool to fabricate a profitable arbitrage for the IFU.
Rather, each aggregator has to collect a set of transactions
from the private Mempool according to priority sequence. At
this stage, the aggregator uses the PAROLE module to analyze
the transactions’ order and, if possible, generate a new order
of transactions, which will yield a higher final balance for
the IFU than otherwise. Thus, in spite of Bedrock’s efforts
to mitigate MEV, aggregators’ collection of transactions still
presents opportunities for arbitrage, which poses substantial
risks to market efficiency, liquidity providers, and overall
system trust. Afterward, the transactions are validated and
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TABLE I
LIST OF NOTATIONS

Symbol Definition
Mi,t

k Token with ID ‘i’ is minted by user ‘k’ as ‘t’-th TX
Bt

k Balance of user ‘k’ after ‘t’-th TX confirmation
Pt Price of NFT after ‘t’-th TX confirmation
P0 Initial price of NFT
T i,t
j,k Token with ID ‘i’ is transferred from user ‘j’ to user ‘k’ as ‘t’-th TX

Oi,t
k Token with ID ‘i’ is owned by user ‘k’ after ‘t’-th TX confirmation
St Available # of tokens to be minted after ‘t’-th TX confirmation
S0 Total supply of tokens specified in the NFT smart contract
Di,t

k Token with ID ‘i’ is burnt by user ‘k’ as ‘t’-th TX
U Set of optimistic rollup users
Uk The ‘k’-th rollup user
A Set of rollup aggregators
Ak The ‘k’-th rollup aggregator
AP The adversarial rollup aggregator committing PAROLE attack
V Set of rollup verifiers
Vk The ‘k’-th rollup verifier

executed in the generated profitable order, meaning there is
no further manipulation of data and/or adversarial activity
during execution by the adversarial aggregator. Thus, all the
aggregators bundle their collected transactions and calculate
the Merkle state root as fraud-proof. Finally, the verifiers will
inspect the fraud-proof and should not initiate the dispute
phase unless there is some adversarial manipulation from the
rest of the aggregators (unrelated to PAROLE attack).

B. Attack Workflow

In this part, we discuss the detailed workflow of the PAROLE
attack, which is presented in Figure 3. The users in L1
send their transactions to the rollup smart contract residing
in the L1. Bedrock generates blocks at regular intervals,
necessitating a buffer to store pending transactions until they
are incorporated into a block [13]. As mentioned before, the
pending transactions of optimistic rollup are stored in a private
Mempool. As shown in the figure, the aggregators collect the
transactions and are supposed to execute them in order of their
base and priority fees. However, the adversarial aggregator
sends the transactions to the PAROLE module, which at first
checks if there is an arbitrage opportunity for the IFU. The
adversarial aggregator provides the private wallet information
of the IFU, along with the remote procedure call (RPC) node
URL used by the IFU at that time. Given the set of transactions
collected by the aggregator and the IFU information, the
potential arbitrage opportunity is checked. If there is a prof-
itable arbitrage opportunity, then the GENTRANSEQ module is
utilized. The same IFU information, along with the state root
of L2’s blockchain, is fed into the GENTRANSEQ module.
This module is comprised of one of the most prevalent model-
free DRL algorithms called the DQN.

The DQN module considers the current sequence of trans-
actions as the initial observation of the environment and trains
itself to predict the order of transactions that will maximize
the balance of the IFU/IFUs. It takes into consideration the
current state of the L2 chain to execute each candidate
solution using an optimistic virtual machine (OVM) [57] and
observe the balance update of the IFU. It also tracks the
price update of the limited edition ERC-721 tokens, which

are minted/transferred/burned during the transactions in con-
sideration. Finally, if there is at least one alternate order that
results in a higher balance for the IFU, the GENTRANSEQ
module returns that order. If multiple candidate orders exist,
then it tries to optimize the sequence to maximize the IFU’s
balance. A detailed technical analysis of the GENTRANSEQ
module is provided later in Section V.

Finally, the adversarial aggregator validates and executes
the transactions in the GENTRANSEQ module produced or-
der. Then, they are bundled together to create the rollup of
transactions. No further adversarial activities are performed
after the altering of the transaction order. Later, the verifiers
check the fraud-proof, and if none of the other aggregators
performed any illegal action, the batch of rollup transactions
is added directly to the main L1 blockchain.

V. TECHNICAL DETAILS

In this section, we present the technical details of the
proposed attack by first formally defining the optimistic rollup
system. Then, we discuss the arbitrage assessment technique
utilized in the PAROLE module, followed by the detailed
analysis of the GENTRANSEQ module’s Markov Decision
Process (MDP) design and the architecture of the DQN model.

A. Formally defining Optimistic Rollup System

To interact with an optimistic rollup system, users must
borrow L2 tokens from the optimistic rollup smart contract
(ORSC) residing in L1. A user can exchange Ethereum coins
(ETH) to get an equivalent amount of the L2 tokens. Each user
Uk (∈ U) sends its transactions to the ORSC for processing
in the off-chain system:

Uk.SubmitTX(TXk ) → ORSC;TXk ∈ {M i,t
k , T i,t

k,l, D
i,t
k }

The terms M i,t
k , T i,t

k,l, D
i,t
k represent different types of NFT

transactions (minting, transfer, and burning, respectively),
which are defined in Table I. The ORSC stores the uncon-
firmed transactions in the Bedrock’s Mempool:

ORSC.PrivateStore(T j,1
x,y, ...., D

l,N
z ) → BedRockMemPool

A set of aggregators (A) work as the primary operators of
the rollup system, where they are responsible for transaction
validation and execution. Each aggregator Ak collects a set of
transactions from Bedrock’s Mempool and processes them in
the order of their base and priority fees. Then, the executed
transactions from A’s aggregators are bundled together, and
the new Merkle state root of the L2 chain is computed as the
fraud-proof :

A.AggregateTX(BedRockMemPool) → RollupTX, Proof

Afterward, the set of verifiers (V) is responsible for checking
the validity of the executed transactions by checking the
generated fraud-proof, within a predefined challenge period.
If no verifier challenges the proof, then:

A.SubmitBlock(RollupTX) → ORSC

ORSC.ConfirmBlock(RollupTX) → Etherium
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If at least one verifier Vk challenges the fraud-proof, and
the proof was indeed invalid, then the responsible aggregator
Ak’s bond will be slashed:

Vk.Challenge(A.Proof) → Success
Ak.Bond = Ak.Bond −Ak.SlashBond()

If Vk challenges the fraud-proof, however, the proof was valid,
then Vk’s bond will be slashed:

Vk.Challenge(A.Proof) → Fail
Vk.Bond = Vk.Bond − Vk.SlashBond()

The above discussion formally summarizes the workflow
of an optimistic rollup system. In the next section, we will
discuss PAROLE attack using the notations introduced here.

B. Assessment of Potential Arbitrage Opportunity
As mentioned in Section IV, the adversarial aggregator AP

processes the collected set of transactions through the PAROLE
module. At first, the potential arbitrage opportunity is checked
by analyzing the different types of transactions and IFU’s
involvement in those transactions. There can be three types
of NFT transactions:

1) Minting: Refers to the creation of a new NFT using
the NFT’s smart contract. Each NFT has a unique identifier
or ID, that distinguishes it from other tokens from the same
NFT. Minting of NFT with ID i is possible only if:

M i,t
k → (Bt−1

k ≥ Pt−1) ∧ (St−1 ≥ 1) (1)

which means user Uk’s minting request of i-th NFT can be
executed as the t-th transaction, only if: (i) following the
confirmation of (t − 1)-th transaction, Uk’s balance Bt−1

k is
greater or equal to the price of the NFT (Pt−1), and (ii)
available NFTs to be minted St−1 is greater or equal to 1.
If both the constraints are satisfied, then:

Oi,t
k = True

Bt
k = Bt−1

k − Pt−1

St = St−1 − 1 (2)
The above operations are performed when the minting trans-
action gets executed.

2) Transfer: Refers to the transfer of ownership of a
particular instance of the NFT. In simple terms, one user sells
an NFT that he owns to another user. The transfer of NFT
with ID i from user Uk to user Uj is possible, only if:

T i,t
k,j → (Bt−1

j ≥ Pt−1) ∧Oi,t−1
k (3)

meaning the transfer request of the i-th NFT can be executed
as the t-th transaction, only if: (i) following the confirmation
of (t−1)-th transaction, Uj’s balance Bt−1

j is greater or equal
to the price of the NFT (Pt−1), and (ii) the token with ID i
is owned by user Uk (Oi,t−1

k ). If both are satisfied, then:

Oi,t
j = True

Bt
j = Bt−1

j − Pt−1

Bt
k = Bt−1

k + Pt−1 (4)

The above operations are performed when the transfer trans-
action gets executed.

Algorithm 1: PAROLE Algorithm
1 Function PAROLE(UIFU ,ChainL2 ,TxSeqOriginal):
2 if Arbitrage(UIFU ,TxSeqOriginal ) then
3 (γ, ϵ, d, α)← Set
4 for ep ∈ Episodes do
5 State← TxSeqOriginal ; Env ← {UIFU ,ChainL2}
6 for sp ∈ MaxSteps do
7 if rand(0, 1) ≥ ϵ then
8 action← QNet(State)
9 end

10 else
11 action← rand(Actions)
12 end
13 {rsp, State′, Profit} ← Env.Act(action, State)

14 QNet .update(LossTD = TargetNet(State))
15 State← State′; Rep ← Rep + rsp
16 TargetNet .copy(QNet) if Profit
17 end
18 TxSeqFinal ← State
19 end
20 end
21 else
22 TxSeqFinal ← TxSeqOriginal

23 end
24 return TxSeqFinal ;

3) Burning: Refers to the destroying of an already minted
NFT using the NFT smart contract. A user Uk can burn its
token with ID i, only if:

Di,t
k → Oi,t−1

k (5)

which means if Uk owned i-th NFT after the confirmation of
(t − 1)-th transaction, then he can burn the NFT as the t-th
transaction. If the above constraint is satisfied, then:

Oi,t
k = False

St = St−1 + 1 (6)

The above operations are performed when the burning trans-
action gets executed.

By analyzing the set of transactions collected by AP , the
potential for arbitrage opportunity is assessed. Since there can
be three kinds of transactions, the order of their execution can
significantly influence the final outcome of the system. The
minting and burning transactions change the price per unit
NFT, since these transactions decrease/increase the available
number of NFTs still to be minted (Equation 2 and 6), in
the case of the limited edition variant of ERC-721 token.
Importantly, specific transactions can only be executed when
positioned at a particular point in the sequence, and their
execution is precluded if placed at other points due to the
transaction constraints being unsatisfied (Equation 1, 3, and
5). Thus, during the assessment, it is crucial to verify the
execution of specific transactions, all of which would have
satisfied the constraints in the original sequence.

There is potential for profitable arbitrage for the IFU,
if he is involved in multiple transactions within the set of
transactions collected by AP . Ideally, he should at least be
involved in a pair of minting and transfer transactions, while
being involved in more transactions increases the chance for
potential arbitrage opportunities. In the next section, we will
discuss how the GENTRANSEQ module processes the original
sequence, given the IFU and L2 chain state information.
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Fig. 4. The Pre-processing and deep Q-network architecture of the GENTRANSEQ module.

C. Analysis of the GENTRANSEQ Module

In this part, we discuss the GENTRANSEQ module in detail
by first illustrating the modeling of the MDP for the transaction
re-ordering problem and then discussing the DQN architecture.

1) Designing the MDP: We conceptualize the problem as a
Markov game, an extension of the MDP. Specifically, in DRL,
an MDP is typically represented as a tuple comprising states,
actions, transition probabilities, rewards, and a discount factor.
We designed an advanced MDP to represent the transaction re-
ordering environment, where a DQN agent will be trained for a
certain number of episodes (an “episode” referring to a single
run or instance of the agent interacting with the environment
from start to finish). In each episode, the agent receives a fresh
set of transactions in their original sequence, and the agent is
tasked with executing a certain number of actions (limited by a
predefined maximum bound, i.e., maximum steps) to produce
an altered sequence that meets the attack objective. This MDP
is expressed as a six-tuple: {States, Actions, Reward, Policy
(π), Discount Factor (γ), Exploration (ϵ)}. Each component of
this tuple will be explored in detail in the following sections.

States: The set of states represents all the possible ob-
servations an agent can experience within the environment.
In this case, an observation is a sequence of transactions.
Thus, the DQN agent observes the current state, i.e., the
current order of the transactions collected by AP and takes an
appropriate action. We consider the number of transactions an
aggregator collects for processing purposes as the individual
“Mempool” size of that aggregator (distinct from Bedrock’s
Mempool). In the evaluation section (Section VII), we use the
term “Mempool” to refer to the aggregator’s Mempool.

The environment consists of all the possible states an
agent can be in. If the “Mempool” size of the aggregator
is N (collects N number of transactions from Bedrock’s
Mempool), then the total number of possible states for the
agent will be ‘N!’. There can be multiple candidate states
(i.e., order of transactions) that result in a higher final balance
for the IFU. However, the maximum possible balance can
be achieved through a subset of those candidate states. The
DQN agent, by solving this non-linear optimization problem,
learns the intelligent ordering of those transactions and ensures
maximum final balance for the IFU.

Action: The set of actions represents the range of activities
an agent can perform to interact with the environment. Since
a DRL agent solves problems by making sequential decisions
over time, a solution involves taking a set of actions. For
this problem, an action is swapping two transactions from the
current sequence of transactions (i.e., current state). During
the initial stage of training, an agent might perform a lot of
swappings to reach the goal state; however, with a sufficient
amount of training, the number of swaps (i.e., actions) will be
optimized. For example, in a grid world, to reach a goal cell,
an untrained agent will take many moves (action: moving in
all possible directions in the grid world); however, as it is more
trained, the path length (number of actions) will be optimized.

If the “Mempool” size of the aggregator is N (collects N
number of transactions from Bedrock’s Mempool), then the
total number of possible actions for the DQN agent will
be NC2, i.e., choice of any two transactions form the N
transactions.

Reward: The reward function, shaped by the rewards, gov-
erns the learning process of the agent. Achieving an order that
results in a better final balance for the IFU results in positive
rewards, while producing an order that results in a worse final
balance for the IFU results in penalties. Additionally, an agent
is penalized if it takes an action that fails to guide the agent
towards an increasing final balance for the IFU. If the reward
of i-th episode is Ri, then:

Ri =

m∑
k=1

rk units (7)

here, m is the total number of steps per episode, and rk is the
reward achieved at that step. The reward for the k-th step is
calculated by:

rk = W × (BN,k
IFU −BN,0

IFU ) (8)

where, BN,0
IFU and BN,k

IFU presents the balance of IFU after N -
th transaction execution with the original sequence and the
altered sequence after k-th action, respectively. The weight
factor W is set to a high positive value for penalizable action,
while it is set to ‘1’ for other cases.

Policy (π): Policy is the learning of agents through inter-
action and exploration within the environment, specifying the
action an agent will undertake in a given state. In this scenario,
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the policy is simply determined by the weights and biases of
the Q-network, dictating the action an agent takes based on
observations of the state.

Discount Factor (γ): The discount factor plays a crucial
role in determining the extent to which DQN agents prioritize
rewards in the distant future relative to those in the immediate
future. Ranging from zero to one, this parameter influences the
agent’s level of foresight. Setting γ to zero renders the agent
fully myopic, focusing solely on immediate rewards. A reward
ri in the future that occurs after X steps will be discounted
by a factor of X (i.e., the reward will be (ri)

X ).
Exploration (ϵ): The exploration parameter governs the

agent’s action behavior, typically initialized close to 1, indi-
cating that there is an almost certain probability that the agent
will take random actions to interact with the environment as
exploration behavior. Those actions shape the learning of the
Q-network. As the episode advances through additional steps,
the value of ϵ decays, reducing the probability of random
actions. A lower ϵ value signifies a higher probability of the
agent choosing actions based on the Q-network, representing
exploitation behavior. The ϵ in GENTRANSEQ module is
reduced each episode with the following equation:

ϵi = ϵmin + (ϵmax − ϵmin)
−(d×i) (9)

where, ϵi is exploration parameter of i-th episode, and d
represents the decay parameter.

2) Architecture of the DQN: This part discusses the DQN
model (Figure 4) utilized in the GENTRANSEQ module.
Whenever the exploitation behavior is chosen for a step, the
DQN is utilized for determining the next action. At first, the
original transaction set is passed as the initial input to the
GENTRANSEQ module, where each transaction is converted
into a 1-dimensional (1D) tensor by encoding each attribute
of the transaction. Generally, it is an eight-element tensor,
including flags like the involvement of IFU in the transaction,
the type of the transaction (i.e., transfer/minting/burning), and
values like current token price, available tokens to be minted,
etc. Aggregating all the tensors from the transaction list makes
the 2D tensor input to the DQN model. The first layer is
the flattening layer, converting the input into a 1D vector
and passing it to the input layer, where there will be 8 × N
processing elements (PEs), given the transactions’ sequence
length is N . After multiple hidden layers, the output layer
predicts the action and the associated Q-value (given the
next state). As mentioned earlier, NC2 actions are possible
with transactions’ sequence length of N , indicating that the
output layer will have NC2 PEs. Finally, the action with the
maximum Q-value is selected, and corresponding transactions
are swapped to create an alternate sequence as the next state.
The same steps are performed for the next step.

For updating the Q-network through backpropagation, the
temporal difference (TD) error is calculated as the prediction
loss. This is actually the difference between the true Q-value of
a state-action pair and the value estimated by the Q-network.
The target network is utilized for the estimated true Q-value
prediction, which utilizes the Bellman equation [58] and the

TABLE II
MODELING PARAMETERS OF GENTRANSEQ MODULE

Parameter Name Assigned Values
Exploration parameter (ϵ) 0.95
Epsilon decay (d) 0.05
Discount factor (γ) 0.618
Episodes 100
Steps (Each episode) 200
Learning rate (α) 0.7
Reply memory buffer size 5,000
Q-network update Every 5 steps
Target network update Every 30 steps

discounted future rewards. All the values of different hyperpa-
rameters used in the DQN are summarized in Table II. Initially,
the agent explores extensively with a high exploration rate
(ϵ) of 0.95, gradually decreasing exploration over time (with
d set to 0.05) for maintaining adaptability. Experimentation
with learning rates (α) ranging from 0.05 to 0.75 shows 0.7 as
favorable for rapid learning and stability. After investigating,
we found a discount factor of 0.618 balances short-term and
long-term rewards effectively. Limiting the training to 100
episodes prevents overfitting, while setting 200 steps within
an episode are found to be adequate. A large reply memory
buffer aids generalization, and updating the Q-network every 5
steps and target network every 30 steps stabilizes training and
accelerates learning. The PAROLE attack’s steps are shown in
Algorithm 1 in a simplified way using the notations introduced
in this section.

VI. CASE STUDIES

In this section, we quantify the attack benefit for the IFU
through three case studies, as shown in Figure 5. The first
case illustrates the original order of the transaction execution,
while the latter cases show two alternative orders of transaction
execution and the corresponding attack benefits.

A. Status of the System:

For all the case studies, the IFU of the adversarial aggregator
has an initial L2 token balance of 1.5 ETH and owns 2
PAROLE tokens. The current price of one unit limited edition
PAROLE token is 0.4 ETH, which varies according to scarcity
(demand/supply). Accordingly, only the minting and burning
transactions update the price of each unit of PAROLE token,
while transfer transactions keep the price as is. The price of the
PAROLE token is updated according to the following equation:

Pt
PT =

S0
PT

St
PT

× P0
PT (10)

Here, Pt
PT represents the price of the PAROLE token after

the t-th transaction is executed, and P0
PT represents the initial

price of the same. The maximum number of PAROLE tokens
that could be minted, i.e., S0

PT is set to 10, and the initial price,
P0
PT is set to 0.2 ETH. Among the maximum supply of 10,

5 PAROLE tokens are already minted (i.e., remaining tokens
to be minted, St

PT is 5), and the price per unit has increased
to 0.4 ETH, according to Equation 10. Only the balance of
IFU is calculated in the case studies since the GENTRANSEQ
module alters the order of transactions for maximizing the IFU
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Transfer PT: U1 → U2

Original TX Sequence
(TXs involving PT)

PT Price
(1 unit)

0.4 ETH

IFU Total Balance
L2 balance+(PTs owned)*Price

1.5 + (2*0.4) = 2.3 ETH

Mint PT: U19 0.5 ETH

Transfer PT: IFU → U11 0.5 ETH

Transfer PT: U19 → U6 0.5 ETH

Mint PT: IFU 0.66 ETH

Transfer PT: U13 → U3 0.66 ETH

Burn PT: U2 0.5 ETH

Transfer PT: U1 → IFU 0.5 ETH

1.5 + (2*0.5) = 2.5 ETH

2.0 + (1*0.5) = 2.5 ETH

2.0 + (1*0.5) = 2.5 ETH

1.5 + (2*0.66) = 2.82 ETH

1.5 + (2*0.66) = 2.82 ETH

1.5 + (2*0.5) = 2.5 ETH

1.0 + (3*0.5) = 2.5 ETH

TX1

TX2

TX3

TX4

TX5

TX6

TX7

TX8

(a)

Transfer PT: U1 → U2

Altered TX Sequence
(TXs involving PT)

PT Price
(1 unit)

0.4 ETH

IFU Total Balance
L2 balance+(PTs owned)*Price

1.5 + (2*0.4) = 2.3 ETH

Burn PT: U2 0.33 ETH

Mint PT: IFU 0.4 ETH

Transfer PT: U19 → U6 0.4 ETH

Transfer PT: IFU → U11 0.4 ETH

Transfer PT: U13 → U3 0.4 ETH

Mint PT: U19 0.5 ETH

Transfer PT: U1 → IFU 0.5 ETH

1.5 + (2*0.33) = 2.16 ETH

1.17 + (3*0.4) = 2.37 ETH

1.17 + (3*0.4) = 2.37 ETH

1.57 + (2*0.4) = 2.37 ETH

1.57 + (2*0.4) = 2.37 ETH

1.57 + (2*0.5) = 2.57 ETH

1.07 + (3*0.5) = 2.57 ETH

TX1

TX7

TX5

TX4

TX3

TX6

TX2

TX8

(b)

Transfer PT: U1 → U2

Altered TX Sequence
(TXs involving PT)

PT Price
(1 unit)

0.4 ETH

IFU Total Balance
L2 balance+(PTs owned)*Price

1.5 + (2*0.4) = 2.3 ETH

Burn PT: U2 0.33 ETH

Transfer PT: U1 → IFU 0.33 ETH

Mint PT: IFU 0.4 ETH

Transfer PT: U19 → U6 0.4 ETH

Transfer PT: IFU → U11 0.4 ETH

Transfer PT: U13 → U3 0.4 ETH

Mint PT: U19 0.5 ETH

1.5 + (2*0.33) = 2.16 ETH

1.17 + (3*0.33) = 2.16 ETH

0.84 + (4*0.4) = 2.44 ETH

0.84 + (4*0.4) = 2.44 ETH

1.24 + (3*0.4) = 2.44 ETH

1.24 + (3*0.4) = 2.44 ETH

1.24 + (3*0.5) = 2.74 ETH

TX1

TX7

TX8

TX5

TX4

TX3

TX6

TX2

(c)

Fig. 5. Case Studies: a) Case 1: The resultant PT price and IFU balance
update with the original transaction sequence. b) Case 2: The resultant PT
price and IFU balance update with a candidate altered transaction sequence
yielding better IFU final balance. c) Case 3: The resultant PT price and IFU
balance update with optimally altered transaction sequence yielding maximum
IFU final balance.

balance. The total balance of the IFU is the summation of the
L2 token balance and the price of the PAROLE tokens he owns.
In all the cases in the subsequent sections, the transactions are
numbered in the order of the original sequence.
Case 1: In the first case, as shown in Figure 5(a), the IFU
has an initial balance of 2.3 ETH. He is involved in three
transactions, two of which are transfer transactions, and one
is a minting transaction (all colored red). After the first

transaction, the IFU’s balance remains unchanged since it was
a transfer transaction. The second transaction is a minting
transaction performed by user U19, which changes the price
of a unit PAROLE token from 0.4 ETH to 0.5 ETH (as per
Equation 10). The IFU’s balance is updated since the price of
PAROLE token has increased. His L2 token balance remains
the same, while PAROLE portion valuation increases from 0.8
ETH to 1.0 ETH. Although the third transaction involved the
IFU, it did not update the IFU’s balance since it was a transfer
transaction. As he sold one of his PAROLE tokens, he now
has an L2 token balance of 2.0 ETH, and PAROLE portion
valuation decreases to 0.5 ETH. The fourth transaction keeps
the IFU’s balance the same since it was a transfer transaction.
The IFU mints in the fifth transaction, which increases the per
unit price of PAROLE token. His balance has also increased
to 2.82 ETH due to the price update. The sixth transaction
also did not update the IFU’s balance since it is a transfer
transaction. The seventh transaction is a burning transaction
by user U2, which increases the supply of PAROLE token. As
a result, the per unit price reduces to 0.5 ETH from 0.66 ETH
(Equation 10). Thus, IFU’s balance is reduced to 2.5 ETH,
where his L2 token balance remains the same (1.5 ETH), while
PAROLE portion valuation decreases to 1.0 ETH from 1.32
ETH. Finally, in the eighth transaction, IFU buys a PAROLE
token from user U1, which does not update his total balance;
however, his L2 token balance becomes 1.0 ETH, and PAROLE
portion valuation becomes 1.5 ETH.
Case 2: The second case, as presented in Figure 5(b),
demonstrates an altered order of transactions generated by
the GENTRANSEQ module, resulting in a higher final total
balance for the IFU. Like the previous case, the IFU has an
initial balance of 2.3 ETH. After the first transaction, the IFU’s
balance remains unchanged since it was a transfer transaction.
However, this time, the burning transaction by user U2 takes
place as the second transaction, which increases the supply of
PAROLE token. As a result, the per unit price reduces to 0.33
ETH from 0.4 ETH. Thus, IFU’s balance is reduced to 2.16
ETH from 2.3 ETH, where his L2 token balance remains the
same (1.5 ETH), while PAROLE portion valuation decreases.
This time, the IFU mints at the third transaction, which
increases the per unit price of PAROLE token. His balance has
also increased to 2.37 ETH due to the price update, where his
L2 token balance becomes 1.17 ETH, and the PAROLE portion
valuation increases from 0.66 ETH to 1.2 ETH. The fourth
transaction, as before, keeps the IFU’s balance the same since
it was a transfer transaction. Although the fifth transaction
involved the IFU, it did not update the IFU’s balance since
it was a transfer transaction. As he sold one of his PAROLE
tokens, he now has an L2 token balance of 1.57 ETH, and
PAROLE portion valuation decreases to 0.8 ETH. The sixth
transaction also did not update the IFU’s balance since it is
a transfer transaction. The seventh transaction is a minting
transaction performed by user U19, which changes the price
of a unit PAROLE token from 0.4 ETH to 0.5 ETH (as per
Equation 10). The IFU’s balance is updated since the price of
PAROLE token has increased. His L2 token balance remains
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Fig. 6. Comparing the average attack profit while serving different numbers
of IFUs, with variable Mempool sizes: (a) 10% of the aggregators were
adversarial, and (b) 50% of the aggregators were adversarial.

the same, while PAROLE portion valuation increases from 0.8
ETH to 1.0 ETH. Finally, in the eighth transaction, IFU buys
a PAROLE token from user U1, which does not update his total
balance; however, his L2 token balance becomes 1.07 ETH,
and PAROLE portion valuation becomes 1.5 ETH.
Case 3: The third case, as presented in Figure 5(c), demon-
strates the optimal altered order of transactions generated by
the GENTRANSEQ module, resulting in the maximum final
total balance for the IFU. Like case 1, the IFU has an initial
balance of 2.3 ETH. After the first transaction, the IFU’s
balance remains unchanged since it was a transfer transaction.
Similar to case 2, the burning transaction by user U2 takes
place as the second transaction, which increases the supply of
PAROLE token. As a result, the per unit price reduces to 0.33
ETH from 0.4 ETH. Thus, IFU’s balance is reduced to 2.16
ETH from 2.3 ETH, where his L2 token balance remains the
same (1.5 ETH), while PAROLE portion valuation decreases.
In the third transaction, IFU buys a PAROLE token from user
U1, which does not update his total balance; however, his
L2 token balance becomes 1.17 ETH, and PAROLE portion
valuation becomes 0.99 ETH. This time, the IFU mints at
the fourth transaction, which increases the per unit price of
PAROLE token. His balance has also increased to 2.44 ETH
due to the price update, where his L2 token balance becomes
0.84 ETH, and the PAROLE portion valuation increases from
0.99 ETH to 1.6 ETH. The fifth transaction, as before, keeps
the IFU’s balance the same since it was a transfer transaction.
Although the sixth transaction involved the IFU, it did not
update the IFU’s balance since it was a transfer transaction.
As he sold one of his PAROLE tokens, he now has an L2 token
balance of 1.24 ETH, and PAROLE portion valuation decreases
to 1.2 ETH. The seventh transaction also did not update the
IFU’s balance since it is a transfer transaction. Finally, the
eighth transaction is a minting transaction performed by user
U19, which changes the price of a unit PAROLE token from 0.4
ETH to 0.5 ETH (as per Equation 10). The IFU’s balance is
updated since the price of PAROLE token has increased. His
L2 token balance remains the same, while PAROLE portion
valuation increases from 1.2 ETH to 1.5 ETH.

B. Discussion on Findings

We observe that, in all three cases, the IFU’s PAROLE token
portion of the balance has a valuation of 1.5 ETH (three
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Fig. 7. Contrasting the attack’s impact in terms of total profit augmentation
with different percentages of aggregators as adversary (with variable Mempool
sizes): (a) Serving 1 IFU, and (b) Serving 2 IFUs.

tokens priced at 0.5 ETH each). However, the beauty of the
GENTRANSEQ module is displayed through the increased L2
token balance, which is increased in Case 2 (by 7%) and
maximized in Case 3 (increased by 24%). The L2 token
portion of the balance is the non-volatile part of the balance,
meaning that it will not decrease with the burning of tokens
(increased supply). Again, Case 2 will occur in the initial phase
of the training, where the DQN agent only looks for a better
final balance for the IFU. As the agent moves to new episodes,
the rewards function is tuned toward maximizing profit for the
IFU. Consequently, Case 3 takes place after the model is fully
trained to optimize the altered sequence of transactions.

TABLE III
BEHAVIOR OF PAROLE TOKEN IN OPENSEA TRANSACTIONS

TX Type TX Hash Block
Number

L1 state
index

Gas
usage TX fees

Minting 0x8..f56 17934499 115922 90.91% 253 Gwei
Transfer 0x3..5f3 18183117 117994 69.84% 142k Gwei
Burning 0xe..cf2 18184325 118004 69.82% 141k Gwei

VII. EVALUATION

In this section, we conduct experimental analysis using our
own real ERC-721 token PT [23] deployed at the OpenSea
testnet via the Optimism Goerli. We conducted different
token transactions with PT (one instance from each type of
transaction is presented in Table III) and performed its data
and traffic-based simulations to validate the effectiveness and
impact of the attack. First, we analyze the model’s efficiency
in augmenting the IFU’s balance. Then, we investigate the
learning performance of the DQN model. Later, we assess
the attack’s impact in the real-world via NFT snapshots.
Finally, we contrast the performance of the DQN model with
well-known non-linear programming (NLP) solvers. All the
experiments were performed on a computer with an 11th Gen
Intel(R) Core (TM) i7-1195G7 @2.90GHz processor and 16
GB of memory.

A. Influence of IFUs on Attack Profit

In this part, we investigate the influence of the number
of IFUs served on the profit achieved through the PAROLE
attack, as shown in Figure 6. Specifically, we show the average
amount of profit achieved for each IFU. In the first case
(Figure 6(a)), we assume that 10% of the aggregators are
adversarial, i.e., launch the PAROLE attack. As mentioned
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Fig. 8. The moving average of the episode rewards accumulated by the DQN
agent with variable ϵ parameter values, serving (a) 1 IFU, and (b) 2 IFUs.

before in Section V, “Mempool” size indicates the number
of transactions an aggregator collects for processing (different
from Bedrock’s Mempool). We observe that serving less
number of IFUs incurs better results in terms of average profit
per IFU, which is due to the fact that the transactions can only
be re-ordered in ‘N !’ number of ways, and very few alternate
orders could increase the final balance for multiple IFUs. Thus,
as we increase the number of IFUs to be served, the average
profit amount keeps decreasing. We also vary the size of the
Mempool and observe that a larger Mempool helps achieve
better average profit. This is due to the fact that having more
transactions to be ordered gives the DQN agent more flexibility
in terms of possible alternate sequencing to serve the intended
number of IFUs. However, the profit does not linearly increase
as we keep enlarging the Mempool. The profit convergence
can be observed through the lesser difference in profit for
Mempool sizes 50 and 100, compared to the difference with
Mempool sizes 25 and 50. We increase the portion of the
adversarial aggregators in Figure 6(b) to 50% and observe
that the profit per IFU has increased substantially. However,
the first case would be more realistic in real-world optimistic
rollup system. We will further analyze the effect of different
adversarial aggregators’ portions in the next section.

B. Validating Attack Impact w.r.t. Adversarial Proportion

In this section, we experiment with different percentages of
the aggregators as adversarial and observe the corresponding
summations of total profits for all the IFUs, as shown in
Figure 7. Initially, we consider 1 IFU to be served by the ad-
versarial aggregators, illustrated in Figure 7(a). It is observed
that the total profit increases as the proportion of adversarial
aggregators is increased; however, in the case of Mempool size
of 50, the trend of increase somewhat converges around 110k
Satoshis (from 20% to 40%). Conversely, a linear increase is
observed with a Mempool size of 100. The reason behind this
is with a smaller Mempool, there are fewer alternate sequences
to increase the total profit, even if there is a higher percentage
of attackers. With a larger Mempool, each attacker finds more
solutions and moves towards the optimal one. In Figure 7(b),
2 IFUs are served; however, the total profit increase is not
linear. This refers back to the observation we achieved in the
previous section.

C. Performance Assessment of the DQN Model

In this section, we observe the reward accumulation
throughout the training episodes of the DQN agent, as shown
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Fig. 9. Kernel Density Estimate curves for solution size in terms of the
number of swaps performed by the DQN agent to find the first candidate
solution: with (a) Mempool size = 50, and (b) Mempool size = 100.

in Figure 8. We specifically present the moving average of
the reward units with a window size of 9. In the first case
(Figure 8(a)), we set the number of IFUs to one and observe
the reward accumulation with different ϵ values. It is observed
that when training starts with ϵ being set to ‘0’, the average
moving reward does not increase that much, even after being
close to termination episodes. This is due to the fact that the
agent always exploits the Q-network for action decisions. As
a result, much of the environment (e.g., potential solutions
with higher rewards) is left unexplored. The agent learns a
few swapping behaviors and gets trapped in a local optimum.
On the other hand, with ϵ being set to ‘1’, the agent explores
the solution space and performs significantly better. Even the
first moving average (of the first nine episodes) is higher
than the previous case. The choice of ϵ being set to ‘0.5’
also derives intelligent behavior; however, the learning is a
bit slow in terms of episode number compared to the ‘1’
case. We further experiment with IFUs being set to two in
Figure 8(b), and observe similar results. However, in this case,
the rewards are in the range of approximately -30K to 1K units,
which is worse compared to the one IFU case (approximately
-18K to 5K units). It is evident that finding the sequence of
transactions that serve more IFUs requires more exploration of
the environment, causing more penalizable actions. Further, it
is observed that the choice of ‘1’ does not increase the reward
prominently after around 70 episodes since the maximum
achievable reward is reached.
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Fig. 10. Analyzing real-world monetary impact via NFT snapshots.

D. Distribution of Solution Sizes

In this section, we discuss the distribution of solution
sizes with different numbers of IFUs to serve, using Kernel
Density Estimate (KDE) curves (Figure 9). In the first case
(Figure 9(a)), we set the Mempool size to 50 and observe that
the solutions with approximately five actions have the highest
probability when only one IFU is served. This means that with
a trained DQN agent, in most cases, five swaps will outcome
a sequence that will maximize the balance of the only IFU.
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Fig. 11. Contrasting the DQN inference performance with non-linear pro-
gramming solvers in terms of, (a) the execution times of the solvers, and (b)
the memory usage by the solvers.

As we keep increasing the number of IFUs to be served, we
observe the distribution to be more spread in larger ranges.
We observe similar trends in Figure 9(b), where the Mempool
size is increased to 100. However, this time, the three IFUs and
four IFUs are concentrated on multiple peaked regions, which
is due to the fact that with the increased Mempool size, the
agent finds multiple candidate strategies with potentially larger
solution space.

E. Attack impact in Real-world NFTs

In this section, we analyze the impact of the PAROLE attack
in real-world NFT marketplaces in terms of profit gain. We
investigate historical snapshots of NFTs (deployed through
optimistic rollup mainchains), including details such as prices,
transaction volumes, and other relevant information (through
wallet address and NFT minting contract address lookups via
websites such as “holders.at” [59]). We searched for instances
where the same NFT was priced differently at different times
and looked for arbitrage opportunities among the transactions.
As shown in Figure 10, we divide the NFTs into three
categories according to the frequency of their transactions
(FT): i. less than 100 ownerships (e.g., 0x7A..c8e deployed
via Optimism) as low FT (LFT), ii. ownerships between 101
to 3000 (e.g., 0xCE..791 deployed via Arbitrum) as medium
FT (MFT), and iii. more than 3000 ownerships as high FT
(HFT). We observe that there is a higher arbitrage opportunity
with the NFTs deployed via the Arbitrum chain compared to
Optimism. We also calculate the total profit opportunity by
deriving the relation we obtained through our simulation-based
experiments. We want to emphasize that this analysis is solely
based on our observation of the snapshots and experiments.

F. Contrasting DQN performance with NLP Solvers

In this part, we contrast the DQN’s inference performance
(since IFU trains the model offline) with other existing solvers.
As the NFT transaction re-ordering task is a non-linear opti-
mization problem (discussed in Section I), we contrast with
the well-known NLP solvers: Advanced Process OPTimizer
(APOPT), Modular In-core Non-linear Optimization System
(MINOS), and Sparse Non-linear OPTimizer (SNOPT). First,
we compare the execution times of each solver with the
DQN inference time, as shown in Figure 11(a). We observe
that DQN consumes the minimal time among all the solvers
compared. Although, for 5 transactions in the Mempool, we

observe SNOPT performed slightly better than DQN, as we
increased the number of transactions resembling real-world
scenarios, SNOPT performance got worse, following a similar
trend as the other NLP solvers. DQN, on the other hand,
showed a rather linear increase with the larger sizes of
Mempool. We also compare the memory usage of the solvers
(Figure 11(b)) and observe that DQN inference consumed
minimal memory, even if we keep increasing the Mempool
size. These experiments validate the choice of utilizing DQN
instead of the NLP solvers since time is critical in off-
chain transaction processing, while memory usage directly
influences the attack cost.

VIII. POTENTIAL DEFENSE TECHNIQUE

The aggregators periodically interact with the Bedrock
nodes to gather transactions from Bedrock’s Mempool [13].
The problem with the current sequencing technique of
Bedrock’s Mempool is it prioritizes the transactions according
to only the base and priority fees, which allows the opportunity
for arbitrage. While in the pending state, if newer transactions
with higher fees are received, the general approach that
Mempools follow is to send the transactions with the lowest
fees to the block behind [60].

As a potential defense technique to address the PAROLE
attack, we propose to include the GENTRANSEQ module as an
attack detection mechanism in Bedrock’s Mempool. Initially,
the order with the base and priority fee will be considered
and sent to the GENTRANSEQ module to observe the worst
case (maximum profit for any of the users involved in the
pending transactions). If the worst case is below a predefined
threshold (depending on the priority fee), then no action will
be performed since the arbitrage is negligible, considering
the priority of the transactions. However, if the worst case
is above the calculated threshold, then the minimal number
of involved transactions to avoid arbitrage will be sent to
the block behind. In our future work, we will demonstrate
the approach in detail and validate the effectiveness of the
proposed defense technique.

IX. CONCLUSION

In this work, we introduced a novel attack technique in op-
timistic rollup systems, enabling an adversarial aggregator to
achieve profitable arbitrage by rearranging NFT transactions.
We conducted a comprehensive analysis of the attack along
with a detailed explanation of the DQN model utilized by
the GENTRANSEQ module. We discussed a few case studies
that explained how the PAROLE attack augments the non-
volatile part of the IFU balance. Through our own test NFT-
based simulations, we demonstrated the specific impacts of the
attack, including monetary gains with variable environment
setups. We found that serving less number of IFUs incurs
better profit per IFU while having a larger Mempool makes
it convenient for the attacker to look for an optimal solution
with a potentially better solution space. Finally, we validated
the attack’s impact using real-world rollup NFT snapshots,
analyzing the monetary benefits through the PAROLE attack.
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[13] Optimism-Documentation, “Mempool,” https://community.optimism.io/
docs/developers/bedrock/differences/#mempool.

[14] R. McLaughlin et al., “A large scale study of the ethereum arbitrage
ecosystem,” in USENIX Security 2023.

[15] L. Zhou et al., “On the just-in-time discovery of profit-generating
transactions in defi protocols,” in 2021 IEEE SP.

[16] Y. Wang et al., “Cyclic arbitrage in decentralized exchanges,” in Com-
panion Proceedings of the Web Conference 2022.

[17] V. von Wachter et al., “Nft wash trading: Quantifying suspicious
behaviour in nft markets,” arXiv preprint arXiv:2202.03866, 2022.

[18] I. Bogatyy, “How we made $100k trading
cryptokitties.” https://medium.com/@ivanbogatyy/
how-we-made-100k-trading-cryptokitties-2d69aebe715b.

[19] S. Malwa, “Did an “art heist” just happen on an
ethereum cryptopunks nft?” https://cryptoslate.com/
did-an-art-heist-just-happen-on-an-ethereum-cryptopunks-nft.

[20] B. White, A. Mahanti, and K. Passi, “Characterizing the opensea nft
marketplace,” in Companion Proceedings of the Web Conference 2022.

[21] R. Chohan and J. Paschen, “Nft marketing: How marketers can use
nonfungible tokens in their campaigns,” Business Horizons, 2023.

[22] V. François-Lavet et al., “An introduction to deep reinforcement learn-
ing,” Foundations and Trends® in Machine Learning, 2018.

[23] PARolE, “Paroletoken (pt) at opensea market-
place,” https://testnets.opensea.io/assets/optimism-goerli/
0xd27e14457926495bcf06a3c029ef3ef43a2c4a93/0.

[24] K. Croman et al., “On scaling decentralized blockchains: (a position
paper),” in International conference on financial cryptography and data
security. Springer, 2016.

[25] V. Buterin et al., “A next-generation smart contract and decentralized
application platform,” white paper, vol. 3, no. 37, pp. 2–1, 2014.

[26] T. Yu et al., “Dual-blockchain-based p2p energy trading system with an
improved optimistic rollup mechanism,” IET Smart Grid, 2022.

[27] T. Schaffner, “Scaling public blockchains,” A comprehensive analysis of
optimistic and zero-knowledge rollups. University of Basel, 2021.

[28] M. Di Angelo and G. Salzer, “Tokens, types, and standards: identification
and utilization in ethereum,” in 2020 IEEE DAPP.

[29] P. Cuffe, “The role of the erc-20 token standard in a financial revolution:
the case of initial coin offerings,” 2018.

[30] M. A. Wiering and M. Van Otterlo, “Reinforcement learning,” Adapta-
tion, learning, and optimization, vol. 12, no. 3, p. 729, 2012.

[31] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[32] Y. Li, “Deep reinforcement learning: An overview,” arXiv preprint
arXiv:1701.07274, 2017.

[33] Z. Xiong et al., “Practical deep reinforcement learning approach for
stock trading,” arXiv preprint arXiv:1811.07522, 2018.

[34] J. Piet et al., “Extracting godl [sic] from the salt mines: Ethereum miners
extracting value,” arXiv preprint arXiv:2203.15930, 2022.

[35] K. Qin et al., “Quantifying blockchain extractable value: How dark is
the forest?” in 2022 IEEE SP.

[36] M. Bartoletti, J. H.-y. Chiang, and A. Lluch Lafuente, “Maximizing
extractable value from automated market makers,” in Conference on
Financial Cryptography and Data Security. Springer 2022, 2022.

[37] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach,
and A. Juels, “Flash boys 2.0: Frontrunning, transaction reordering,
and consensus instability in decentralized exchanges,” arXiv preprint
arXiv:1904.05234, 2019.

[38] S. Eskandari, S. Moosavi, and J. Clark, “Sok: Transparent dishonesty:
front-running attacks on blockchain,” in Financial Cryptography and
Data Security: FC 2019 International Workshops, VOTING and WTSC,
St. Kitts, St. Kitts and Nevis, February 18–22, 2019, Revised Selected
Papers 23. Springer, 2020, pp. 170–189.

[39] L. Zhou, K. Qin, and A. Gervais, “A2mm: Mitigating frontrunning,
transaction reordering and consensus instability in decentralized ex-
changes,” arXiv preprint arXiv:2106.07371, 2021.

[40] J. Xu and B. Livshits, “The anatomy of a cryptocurrency {Pump-
and-Dump} scheme,” in 28th USENIX Security Symposium (USENIX
Security 19), 2019, pp. 1609–1625.

[41] N. Gandal, J. Hamrick, T. Moore, and T. Oberman, “Price manipulation
in the bitcoin ecosystem,” Journal of Monetary Economics, 2018.

[42] J. Kamps and B. Kleinberg, “To the moon: defining and detecting
cryptocurrency pump-and-dumps,” Crime Science, 2018.

[43] S. S. Roy, D. Das, P. Bose, C. Kruegel, G. Vigna, and S. Nilizadeh,
“Demystifying nft promotion and phishing scams,” arXiv preprint
arXiv:2301.09806, 2023.

[44] J. Huang, N. He, K. Ma, J. Xiao, and H. Wang, “A deep dive into nft
rug pulls,” arXiv preprint arXiv:2305.06108, 2023.

[45] T. Sharma, R. Agarwal, and S. K. Shukla, “Understanding rug pulls: An
in-depth behavioral analysis of fraudulent nft creators,” arXiv preprint
arXiv:2304.07598, 2023.

[46] M. Bartoletti, S. Carta, T. Cimoli, and R. Saia, “Dissecting ponzi
schemes on ethereum: identification, analysis, and impact,” Future
Generation Computer Systems, vol. 102, pp. 259–277, 2020.

[47] W. Chen, Z. Zheng, E. C.-H. Ngai, P. Zheng, and Y. Zhou, “Exploiting
blockchain data to detect smart ponzi schemes on ethereum,” IEEE
Access, vol. 7, pp. 37 575–37 586, 2019.

[48] M. La Morgia et al., “A game of nfts: Characterizing nft wash trading
in the ethereum blockchain,” in 2023 IEEE ICDCS.

[49] G. Bonifazi et al., “Performing wash trading on nfts: Is the game worth
the candle?” Big Data and Cognitive Computing, 2023.

[50] S. Serneels, “Detecting wash trading for nonfungible tokens,” Finance
Research Letters, vol. 52, p. 103374, 2023.

[51] D. Liu, F. Piccoli, K. Chen, A. Tang, and V. Fang, “Nft wash trading
detection,” arXiv preprint arXiv:2305.01543, 2023.

[52] X. Wen, Y. Wang, X. Yue, F. Zhu, and M. Zhu, “Nftdisk: Visual
detection of wash trading in nft markets,” in Proceedings of the 2023
CHI Conference on Human Factors in Computing Systems, 2023.

[53] M. Ciampi et al., “Fairmm: A fast and frontrunning-resistant crypto
market-maker,” in International Symposium on Cyber Security, Cryptol-
ogy, and Machine Learning. Springer, 2022.

[54] 2022, “Flashbots,” https://docs.flashbots.net/.
[55] Gnosis, “Gnosis protocol,” https://gnosis.io/.
[56] M. M. Chakravarty et al., “The extended utxo model,” in Financial

Cryptography and Data Security: FC 2020 International Workshops.
[57] Alchemy-Documentation, “What is the optimistic virtual

machine (ovm)?” https://www.alchemy.com/overviews/
optimistic-virtual-machine.

[58] E. Barron and H. Ishii, “The bellman equation for minimizing the
maximum cost.” NONLIN. ANAL. THEORY METHODS APPLIC., 1989.

[59] J. Quack, “holders.at,” https://holders.at/.
[60] M. O. S. Project, “mempool.space,” https://mempool.space/.

13

https://www.cryptopolitan.com/binance-all-ethereum-rollups-are-centralized/
https://www.cryptopolitan.com/binance-all-ethereum-rollups-are-centralized/
https://community.optimism.io/docs/developers/bedrock/explainer/
https://community.optimism.io/docs/developers/bedrock/explainer/
https://community.optimism.io/docs/developers/bedrock/differences/#mempool
https://community.optimism.io/docs/developers/bedrock/differences/#mempool
https://medium.com/@ivanbogatyy/how-we-made-100k-trading-cryptokitties-2d69aebe715b
https://medium.com/@ivanbogatyy/how-we-made-100k-trading-cryptokitties-2d69aebe715b
https://cryptoslate.com/did-an-art-heist-just-happen-on-an-ethereum-cryptopunks-nft
https://cryptoslate.com/did-an-art-heist-just-happen-on-an-ethereum-cryptopunks-nft
https://testnets.opensea.io/assets/optimism-goerli/0xd27e14457926495bcf06a3c029ef3ef43a2c4a93/0
https://testnets.opensea.io/assets/optimism-goerli/0xd27e14457926495bcf06a3c029ef3ef43a2c4a93/0
https://docs.flashbots.net/
https://gnosis.io/
https://www.alchemy.com/overviews/optimistic-virtual-machine
https://www.alchemy.com/overviews/optimistic-virtual-machine
https://holders.at/
https://mempool.space/

	Introduction
	Background
	Optimistic Rollup
	Ethereum Tokens: ERC-20 and ERC-721
	Reinforcement Learning

	Related Work
	PARolE Attack: Key Idea
	Theoretical Definition of PARolE
	Attack Workflow

	Technical Details
	Formally defining Optimistic Rollup System
	Assessment of Potential Arbitrage Opportunity
	Minting
	Transfer
	Burning

	Analysis of the GenTranSeq Module
	Designing the MDP
	Architecture of the DQN


	Case Studies
	Status of the System:
	Discussion on Findings

	Evaluation
	Influence of IFUs on Attack Profit
	Validating Attack Impact w.r.t. Adversarial Proportion
	Performance Assessment of the DQN Model
	Distribution of Solution Sizes
	Attack impact in Real-world NFTs
	Contrasting DQN performance with NLP Solvers

	Potential Defense Technique
	Conclusion
	References

