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Abstract

The ever-evolving internet of things (IoT) has spawned hundreds of wireless sensors that communicate via the internet infrastruc-
ture. The lifetime and self-sustainability of these sensors are pivotal factors dictating the performance of respective application
infrastructure. Radio frequency energy harvesting (RFEH) technology has exhibited the capability of effectively augmenting the
battery lifetime of these sensors. In this work, we introduce a novel framework called CURe, which combines the advantages of
cell-free massive multiple-input multiple-output (CFmMIMO) and reconfigurable intelligent surfaces (RISs) to provide uninter-
rupted energy harvesting for IoT devices through RFEH. CFmMIMO integrates the advantages of distributed systems and massive
MIMO, while RIS improves the signal strength of the information transfer and RFEH via its passive reflection capabilities. More-
over, we consider unmanned aerial vehicles (UAVs) equipped with CFmMIMO as mobile access points (APs) to better serve the
moving sensory devices. To further enhance RFEH, we propose DeNCE, a channel estimation technique based on deep learning
(DL) that eliminates the need for traditional closed-form equation-based channel estimation methods. Through evaluation, we
first validate the performance of CURe by comparing it with the modified bisection search for max-min fairness (MBS-MMF)
algorithm and later corroborate that DeNCE significantly improves the performances of both models. Finally, to optimize the UAV
deployment and ensure continuous RFEH coverage, we propose dARL, a deep reinforcement learning (DRL)-based scheduling
framework that enables UAV-CFmMIMO swarms to perform continuous energy harvesting in the coverage area collaboratively.

Keywords: Energy harvesting, deep learning, reinforcement Learning, unmanned aerial vehicles, reconfigurable intelligent
surfaces, cell-free massive MIMO.

1. Introduction

Energy harvesting through means of channel estimation plays a crucial role in the system performance of wireless
networks. Currently, an estimation of more than 50 billion internet of things (IoT) devices are connected to the
internet [1, 2], including diverse applications such as healthcare, agricultural, and logistics, etc [3, 4, 5, 6]. Most
IoT devices connect to other IoT devices or the network wirelessly [7]. Moreover, most of these IoT devices are
transportable or are installed and left in remote areas. Hence, recharging the battery of those IoT nodes is crucial for
guaranteeing the continuous operations of these devices [8]. Although replacing the IoT nodes’ batteries is an option,
this solution becomes infeasible for remotely placed nodes. Moreover, the replacement mechanism will cause even
higher expenses owing to transportation and associated labor cost. To resolve these issues, a lot of efforts were exerted
to find different ways of delivering power to IoT devices by wireless means. The visionary Nikola-Tesla proposed to
transmit energy to free space and convert this energy into direct current [9]. That provision led to the techniques of
acquiring energy from new sources, such as wireless power transfer (WPT) and energy harvesting (EH).

Harvesting energy from radio frequency (RF) is a reliable option for charging IoT nodes in indoors, outdoor,
stationary, or mobile situations [10]. However, radio frequency energy harvesting (RFEH) conversion efficiency is
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low when the RF source is far from the node. Cell-free network systems with a central processing unit (CPU) and
front-haul connection can help cope with the distant problem by deploying access points (APs). Some energy harvest-
ing mechanisms aim to maximize total RFEH while selecting APs under transmission power constraints (e.g.,[11]);
however, they don’t consider uplink communications or imperfect channel state information (CSI). Others use a linear
energy harvesting model to minimize transmitted energy for wirelessly-powered IoT devices (e.g., [12]).

Table 1: Abbreviations of Models.

Abbreviations Full form

CURe
(C)FmMIMO-mount (U)AV assisted by (R)IS
framework for RF (E)nergy harvesting

DeNCE
(De)ep (N)eural network-based (C)hannel
(E)stimation architecture

dARL
(D)eployment planning for UAV (A)Ps
using (RL)

Since the massive multiple-input multiple-
output (mMIMO) technique can direct signal
power with narrow beams [13, 14], it has been
considered in both wireless information and en-
ergy transfer [15, 16]. However, it suffers from
inter-cell interference, which reduces energy har-
vesting efficiency for IoT nodes. To address this, a
cell-free mMIMO (CFmMIMO) architecture has
been proposed [17, 18], where many distributed
single-antenna access points (APs) serve a small number of users. Leveraging this infrastructure, we have proposed
CURe, a framework for RF energy harvesting (in our published work [19]) that utilizes CFmMIMO-mount Unmanned
aerial vehicle (UAV) assisted by Reconfigurable intelligent surfaces (RIS). Mounting an AP on UAV achieves much
better energy harvesting efficiency due to its mobility and reachability [20]. The UAVs used in our framework,
equipped with CFmMIMO, provide better signal strength at the edge of the cell. Furthermore, the distributed nature
of CFmMIMO allows for a light-weighted UAV (carrying only a few antennas) that does not affect flying time. Ad-
ditionally, RISs are utilized to reflect AP signals (using controllable intelligent elements) to desired IoT devices and
provide an alternative line-of-sight link with coherent interference. There are a lot of recent advancements toward
UAV and RIS fusion. For instance, Diamanti et al. propose an energy-efficient multi-user communication system
using the aforementioned fusion [21]. The work aims to minimize the system’s energy consumption by optimizing
the UAV’s location and the RIS’s phase shift. However, the paper does not address the issue of inter-cell interference,
which limits the energy harvesting efficiency of the IoT nodes. You et al. improve the communication performance
of an integrated air-ground wireless network using RIS and UAVs [22]. The paper proposes a novel approach that
leverages UAVs’ mobility to enhance the performance of the IRS-assisted communication system. Mei et al. pro-
pose optimizing the 3D-trajectory and phase-shift design for RIS-assisted UAV systems using deep reinforcement
learning [23]. However, none of these works provide any solutions to improve the energy harvesting process, which
could be a significant challenge in the practical implementations of the proposed communication models. Our frame-
work addresses the inter-cell interference issue by leveraging CFmMIMO, while proposing a communication model
for energy harvesting at the IoT devices. We evaluate the performance of CURe by comparing it with the modified
bisection search for max-min fairness (MBS-MMF) algorithm proposed by Demir et al. [24] since we leverage the
CFmMIMO-based system model proposed by them.

Channel estimation is vital to the energy harvesting system design [25]. Among the well-known channel estima-
tion methods, least squares (LS) estimation is known for its low computational complexity method [26, 27]. However,
in many actual applications, especially for multi-path channels, LS estimation produces a rather high channel esti-
mation errors. By minimizing channel estimate errors on average, minimum mean square error (MMSE) estimation,
as an alternative to LS estimation, yields substantially better channel estimation quality [28]. The closed-form equa-
tions of the channel estimates derived by MMSE are based on assumptions such as the propagation channels being
described by a linear system and each channel response following a circularly symmetric complex Gaussian distri-
bution [26]. MMSE estimation, however, has a high computational complexity since CSI is required, which is either
exceedingly difficult to get or fluctuates rapidly in a short coherence time, making it difficult to implement [29, 30].
Deep learning (DL) has been shown to enhance communication reliability and reduce the computational complexity
of 5G and beyond networks significantly [31]. Consequently, in this work, we propose DeNCE, a Deep Neural network
(DNN)-based Channel Estimation architecture for estimating the channel between the UEs and AP antennas as well as
RIS elements. This channel estimation scheme outperforms classic CSI processing approaches like linear minimum
mean square error (LMMSE) estimation, resulting in a Beyond 5G networking paradigm in which machine learning
drives networking optimization. We validate DeNCE’s efficiency by contrasting the performance of the MBS-MMF
algorithm with “LMMSE and LS closed-form based channel estimation” versus “DeNCE-based channel estimation”.
Moreover, we quantify the performance augmentation (with respect to spectral efficiency) of proposed CURe with
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DeNCE-based channel estimation.
Another key aspect of the UAV-mounted CFmMIMOs (UAV-CFmMIMOs)-based energy harvesting is the deploy-

ment scheduling of the APs. This is crucial as the optimal deployment of UAV access points can ensure continuous
coverage without interruptions for UE energy harvesting. Since there is a limitation in the battery capacity of the
UAVs, efficient scheduling becomes more significant for UAV-CFmMIMOs, where the mounted CFmMIMO brings
in some additional burden. To this end, we propose dARL, a Deployment planning for UAV Access points using Rein-
forcement Learning (RL), which dynamically routes the UAVs according to the UE requirements in different regions
in the coverage area. The RL agents are trained using a proximal policy optimization (PPO)-based deep RL (DRL)
framework to perform a collaborative energy harvesting job. Finally, we show the intelligent behavior exhibited by
the agent swarm through the iterative training phases.

The contributions of this work can be summarized as follows:
• We design and implement CURe, a novel RFEH framework that leverages the combined benefits of UAVs,

CFmMIMO, and RIS. We validate the framework’s performance by comparing it with the MBS-MMF algorithm
with respect to spectral efficiency.
• To further augment the RFEH, we design and implement DeNCE, a DL-based channel estimation framework,

eliminating the need for deterministic equations-based channel estimation.
• To optimize the UAV-cfmMIMO deployment cost and ensure continuous coverage, we design and implement

dARL, a DRL-based scheduling framework that dynamically deploys UAVs in different regions.
The first contribution has been published earlier [19], while the latter two contributions are made in this extension.

The full form of each of the proposed models are listed in Table 1.
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Figure 1: Graphical Architecture of (a) massive Multiple-input
Multiple-output (mMIMO) and (b) reconfigurable intelligent sur-
face (RIS).

We organize the rest of the manuscript as follows: We
present adequate preliminary and background information
in Section 2. The proposed framework is introduced in
Section 3. In Section 4, we discuss in detail the proposed
framework and the complete analysis of the proposed al-
gorithms. In Section 5, we demonstrate the system setup
along with the experimental analysis and findings related
to our proposed framework. Recent related literature are
presented in Section 6. Finally, the paper is concluded in
Section 7.

2. Background

In this section, we first discuss the necessary informa-
tion that helps to explain the CURe framework. Later,
we present preliminary information regarding DL-based
channel estimation and RL-based UAV scheduling, which
will motivate the implementation of the DeNCE and dARL
frameworks.

2.1. Cell-Free massive Multiple-input Multiple-output
The mMIMO technology has drawn paramount atten-

tion over the course of the past ten years due to its high
spectral efficiency (SE), achieved by the spatial multi-
plexing of a considerably large number of connected de-
vices [32]. The architecture of the mMIMO system is
shown in Figure 1(a). Although mMIMO technology has
significant advantages, it suffers from inter-cell interfer-
ence, especially at the edge of the cell [33]. In addition,
the complexity of the symbol detector increases dramati-
cally in the uplink direction of the MIMO receiver, owing to a large number of antennas and RF chain [34]. Alterna-
tively, CFmMIMO network architecture has been introduced by Ashikhmin et al. [17], where a small number of IoT
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devices will be served with a larger number of geographically distributed antennas throughout the whole coverage
region. All these antennas are connected to a central processing unit (CPU) via fronthaul links. The antennas (i.e.,
the APs) send the IoT devices’ uplink data to the CPU via the fronthaul links while the CPU sends downlink data
and power coefficients to the APs. One of the significant advantages of the CFmMIMO is that it has a high SE in
addition to other advantages, such as low deployment cost, high flexibility, and appealingly uniform quality of service
(QoS) [35].

2.2. Reconfigurable Intelligent Surfaces

RIS is a completely new concept in the field of wireless technologies, which is attracting a lot of interest from
the wireless research community. It is a controllable metasurface that allows controlling the amplitude and phase of
the reflected signal from its surface [36]. Figure 1(b) shows the basic architecture of the RIS. It has several layers
of planes that can be manufactured with advanced printing and lithography techniques [37]. The elements can make
some changes to the incident signal without affecting the transmit power. The change can be in phase, frequency,
amplitude, or even polarization [36]. A Salient feature of the RIS is its capability to control the environment via the
network operator that shapes the EM response of the objects distributed throughout the network [38]. For example,
when obstacles block the line-of-sight communication, the RIS can be installed on walls or ceilings indoors or on
facades of the buildings outdoors [39] to assist the transmission between the transmitter and the receiver.

2.3. Unmanned Aerial Vehicle as Access Point
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Figure 2: UAV-mounted Access Point.

The UAV technology has recently received a lot of
attention for its use in numerous military and commer-
cial applications [40]. Because of the high probabil-
ity of line-of-sight and flexible deployment, both fixed-
wing and rotary-wing UAVs became strong candidates
to assist 5G and beyond networks. UAV-backed cellu-
lar communications are specifically adapted to provide
service to geographic areas of poor coverage or high-
traffic hotspots. The application of UAV-mounted APs
is shown in Figure 2. These APs communicate with
the CPU through fronthaul links to provide cellular ser-
vices in such geographic areas. However, this method
has several weaknesses, including battery capacity and
service quality. The limited capacity of the UAVs’ bat-
teries restricts their operational time, while the service
quality will be limited by the capacity of the fronthaul link between the UAV and the terrestrial base station (TBS) [40].
An applicable solution to these two problems could be tethered UAVs located on a dedicated mobile station or on the
roof of a building, where those tethered UAVs will receive power and data supply via cable from the TBS [41].
Our proposed model can utilize either untethered or tethered UAVs. Untethered UAVs can be used for time-limited
missions, while tethered UAVs can be used for long-lasting missions.

2.4. Channel Estimation with DL

To deal with the distortion in received signals, due to the channel estimation, DL is becoming a popular choice,
specifically under imperfect environments. Despite DL’s significant success, no analytical interpretation is available to
confirm the benefits or drawbacks of DL methods when applied to communications [42]. Nevertheless, a lot of recent
research works are leveraging DL to supplant closed-form-based channel estimations. More research is indicating
that DL approaches are particularly well suited to channel estimation, and DNNs are increasingly being used in
communication systems [43, 44, 45, 46, 47, 48]. The DNN can learn the channel structure with sufficient training data
and provide reasonable estimates, which outperforms the traditional channel estimation techniques.
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Figure 3: Proposed framework for improved energy harvesting.

2.5. Reinforcement Learning in Scheduling

With the introduction of UAVs into wireless networks, a plethora of planning tasks such as optimal deployment,
flight trajectory design, and energy efficiency are posed alongside. Traditional performance measures like network
coverage, completion rate, and delay have primarily been used in the literature to evaluate each of these assignments.
However, such performance metrics can not always assess the UAV swarm’s performance concerning their primary
objective, i.e., surveying assigned areas, providing coverage of energy harvesting through designated regions, etc.
RL, on the other hand, facilitates a rewards-based performance measure, to make UAV swarms intelligent enough to
stride towards a particular objective collaboratively [49, 50, 51]. The UAVs must complete tasks based on real-time
observation since instantaneous action is mandatory while functioning in a dynamic environment (without centralized
control). RL can perform real-time learning and decision-making depending on the environment, which makes it a
suitable and practical solution for scheduling the energy harvesting job for a swarm of UAV-CFmMIMOs.

3. Framework

In this part, we go over our proposed model, comprising three frameworks, namely CURe, DeNCE, and dARL. Our
system, as shown in Figure 3, provides downlink RF signals to battery-limited IoT devices for energy harvesting. The
APs are UAVs (each equipped with a CFmMIMO, i.e., UAV-CFmMIMO), which are not linked to any direct energy
source. As a result, they always need to come back to recharge themselves after they hover at “a certain location”
or “multiple locations” to serve as APs. They also have a wireless connection to the core backhaul network, i.e., the
base station. The UAV-CFmMIMOs are responsible for transmitting RF signals directly to IoT devices. The RISs, on
the other hand, improve energy harvesting in the downlink and provide signals to non-line-of-sight locations in the
coverage zones. They intelligently reflect the RF signal to the IoT devices. The combined RF signal from the access
points and RISs is harvested at the user end. This power is then used to transfer information from user devices to
access points via uplink. Depending on the location, the uplink signal can be transmitted either directly to the base
station or through the UAV access points or the RIS panel. In summary, the proposed wireless communication utilizes
UAVs that carry only one or a few antenna elements instead of a regular base station. This limited payload keeps the
UAV’s power consumption low, extending its flying time. The CPU is responsible for the cooperation of the individual
antennas (distributed over multiple UAVs) and determines which user each set of antennas will serve. The proposed
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Table 2: List of notations and definitions.
Notation Definition Unit
δc Total number of samples per coherence interval. N/A
δp Pilot sequence length N/A
δd Downlink sequence length N/A
δu Uplink sequence length N/A
h ju Channel between the uth AP and the jth UE GHz

ekϕ ju h̄ ju Line-of-sight components GHz
h̃ ju Non-line-of-sight components GHz
γ ju Large-scale fading co-efficient dB
ϕ ju Phase shift by the Rician fading in the line-of-sight component radian
xE

u Signal sent by the uth AP dBm
w∗ju Downlink precoding vector for the phase of the sent signal by AP N/A
s j Zero-mean unit-variance energy signal for the jth IoT device dBm
p ju Power control coefficient of the uth AP corresponding to the jth device N/A
PE

u Average transmitted power for the uth AP dBm
ρd Maximum power limit dBm
rE

j Received signal for the jth IoT device dBm
nE

j Additive noise at the jth IoT device dBm
I j Average input power to the jth device’s energy harvesting rectifier circuit dBm
E j Total harvested energy for the jth IoT device in the δd channel Joules
N Number of N discrete elements in RIS N/A

hur Deterministic channel from source to RIS GHz
h jr Channel between the destination and the RIS GHz
Θ RIS properties N/A
θk Fixed amplitude reflection coefficient N/A
S r Received signal at the destination dBm
x Transmit power dBm
y Unit-power information signal dBm
n Reception noise dBm

model differs from regular wireless models as it distributes processing instead of concentrating on the base station.
However, the communication model remains the same. The model combines the benefits of cell-free techniques with
the dynamic deployment of UAVs to allow for real-time dynamic scheduling of access points based on real-time
UE/IoT requirements, adjusting scheduling based on real-time region density and population. This concludes the
workflow of CURe [19], which is improved in this work to augment the RFEH further.

Our previous work leveraged closed-form-based deterministic methods for the channel estimation part of the
energy harvesting for both the downlink RF signals of UAV-CFmMIMO and RISs. However, the method has a
considerable amount of estimation error. Consequently, we propose a new channel estimation architecture aided by
DL to improve the channel estimates. We introduce DeNCE, a convolutional neural network (CNN)-based channel
estimation method that is trained with the H matrices produced by the implementation of Demir et al. [24]. This
framework effectively produces the estimated channels when given the appropriate input set. We propose utilizing
this framework for the channel estimation of both the direct UEs and the UEs via RIS. The deployment planning of
the UAV-CFmMIMOs is of paramount importance since they are the only source of RF signals in the proposed model,
and they need to be in the vicinity of UEs to be able to serve them. Since the user movement is hardly deterministic,
it would not be practical to deploy the UAV-CFmMIMOs at specific coverage locations and change their position in
a fixed, routine way. Due to the stochastic mobility of UEs, fixed scheduling will never be able to facilitate them
with continuous energy harvesting support. Consequently, we introduce real-time dynamic scheduling of the UAV-
CFmMIMOs, where there is no fixed schedule. Rather the UAVs are deployed with respect to the real-time UE
requirements. To this end, we introduce dARL, a DRL-based scheduling and deployment framework, which schedules
and routes the UAV-CFmMIMOs in different regions according to the UE density and UE population of the regions.
One of the prominent aspects of this deployment planning scheme is the dynamic capability that allows it to adapt
the plan according to real-time region density and population. It is worth mentioning that the operation of dARL is
independent of the rest of the model, as the deployment is solely dependent on the density and population of UEs in
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different regions of the coverage area. We assume that efficient scheduling will (by means of continuous coverage)
incur increased harvested energy. We validate our assumption through experimentation, presented in Section 5.

4. Technical Details

The technical details of our proposed framework are discussed in this section. First, we go through the system
model that governs it all. Then, we explain our downlink energy harvesting approach. The notations used in the system
model and the downlink energy harvesting approach are defined in Table 2. Later, we describe the DeNCE-based
channel estimation for improved energy harvesting. Afterward, we discuss the dARL-based optimal deployment of
RIS-assisted UAV-CFmMIMO. Finally, we provide a detailed description of the ‘improved’ CURe algorithm through
means of DeNCE and dARL models. We conclude the section by discussing the complexity of the algorithm and
probable deployment in practice.

4.1. System Model CFmMIMO
UAV

User Equipment

RIS mounted on
building side

RIS reflected wire-
less power transfer 

Wire-less
power transfer

CFmMIMO
UAV

hur

hjr

hju

Figure 4: Proposed RIS-assisted wireless power transfer with
UAV-CFmMIMOs.

As access points, we propose cell-free mMIMOs in-
stalled on UAVs. We assume that U number of APs are
spread across the coverage area to serve J number of IoT
devices with harvesting capability. Each UAV-CFmMIMO
is considered to have N antennas and an error-free fron-
thaul link to the CPU. We utilize the implementation of
Demir et al. scheme, proposed in [24]. As a result, we
assume a time division duplex (TDD) operation to force
channel reciprocity. δc refers to the total number of sam-
ples per coherence interval. Each coherent interval is di-
vided into three phases: (i) uplink training, (ii) downlink
wireless power transfer, and (iii) uplink wireless informa-
tion transfer. All IoT devices broadcast pilot sequences of
length δp to the UAV access points in the first phase to es-
timate the channel and create precoding vectors for efficient energy transfer and data reception. δd and δu samples are
used for downlink and uplink transfers, respectively. As a result, the total samples for each coherent interval are:

δc = δp + δd + δu (1)

We represent the channel between the uth AP and the jth user by h ju, where the channels do not change across a
single time-frequency coherence interval. We follow the spatially uncorrelated rician fading channels described by
Demir et al. [24] with unknown phase shifts in the context of CFmMIMO UAVs with multiple antennae. As a result,
each channel’s realization can be stated as follows:

h ju = ekϕ ju h̄ ju + h̃ ju (2)

Here, the line-of-sight (LOS) and non-line-of-sight (NLOS) components are denoted by ekϕ ju h̄ ju and h̃ ju respec-
tively. The small-scale fading for the NLOS component is modeled as NC(0N, γ juIN), where γ ju denotes the large-
scale fading co-efficient. We assume that the UAV access points have perfect knowledge of the LOS component and
large-scale fading coefficient corresponding to the channel between the IoT devices and themselves, explaining the
long-term channel effects in accordance with previous literature. We investigate the realistic scenario where, due
to user movement, phase shift ϕ ju by the Rician fading in the LOS component is unknown, as opposed to previous
research that considers the neglect of ϕ ju. When the receiver and transmitter move over distances on the order of the
wavelength, a small amount of random ϕ ju is induced on both the LOS and NLOS components, which are constructed
by separate routes.
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4.2. Downlink EH

During this phase, all APs begin transmitting energy to IoT devices using CSI for downlink precoding. To increase
the gathered energy, the coherent energy transmission will be examined first, in which the same energy symbol is
transmitted by all APs for each IoT device in a synchronous way. The signal sent by the uth AP can be written as
follows:

xE
u =

J∑
j=1

√
p juw∗jus j (3)

Here, the downlink precoding vector for this phase is denoted by w∗ju. The zero-mean unit-variance energy signal for
the jth IoT device and the power control coefficient of the uth AP corresponding to the jth device are represented by s j

and p ju respectively. In the long run, each CFmMIMO AP’s transmission power should meet the following maximum
power limit:

PE
u ≜ E

{∥∥∥xE
u

∥∥∥2} = E


∥∥∥∥∥∥∥∥

J∑
j=1

√
p juw∗jus j

∥∥∥∥∥∥∥∥
2 = J∑

j=1

p juE
{∥∥∥w ju

∥∥∥2} ≤ ρd (4)

Here, the average transmitted power for the uth AP is denoted by PE
u , and the maximum power limit is denoted by

ρd. The received signal for the jth IoT device is:

rE
j =

U∑
u=1

hT
juxE

u + nE
j =

U∑
u=1

J∑
m=1

√
pmuwH

muh jusm + nE
j (5)

Here, the additive noise at the jth IoT device is indicated by nE
j . The average input power to the jth device’s energy

harvesting rectifier circuit can be written as:

I j = E
{∣∣∣∣∣∣∣∣

U∑
u=1

J∑
m=1

√
pmuwH

muh jusm

∣∣∣∣∣∣∣∣
2}

(6)

We will use the following non-linear energy harvesting model similar to [52] because it correlates with real mea-
sured data. The total harvested energy for the jth IoT device in the δd channel can be stated as:

E j =
δdA jI j

B jI j +C j
(7)

Here, A j > 0, B j ≥ 0, and C j are constants determined by curve fitting of the rectifier circuit of the jth device [52].
We use the expressions from [53] for the RIS-supported transmission. Figure 4 presents a detailed view of the

proposed RIS-assisted energy harvesting with UAV-CFmMIMOs (includes different channel symbols). The RIS con-
sists of N discrete elements, and the deterministic channel from source to RIS is denoted by hur (nth component is
presented by [hur]n). As described in the previous equations, the channel between the destination and the RIS is
denoted by h jr, and the deterministic flat-fading channel is designated by h ju. The following are the RIS properties:

Θ = αdiag(e jθ1 , ..., e jθN ) (8)

Here, the diagonal matrix is represented by Θ, the phase-shift variables and the fixed amplitude reflection coef-
ficient are represented by θ1, ..., θN and α ∈ (0,1] respectively. It is worth mentioning that we do not optimize the Θ,
given that the locations of IoT devices, APs, and RIS are already known. The received signal at the destination can be
expressed as follows:

S r = (h ju + hT
urΘh jr)

√
xy + n (9)
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Figure 5: Proposed DeNCE network.

The transmit power, unit-power information signal, and reception noise are represented by x, y, and n, respectively.
The RIS-supported network’s channel capacity is represented:

RRIS (N) = max
θ1,...,θN

log2

1 + x|h ju + hT
urΘh jr |

2

σ2

 (10)

= log2

1 + x(|h ju| + α
∑N

n=1 |[hur]n[h jr]n|)
2

σ2

 (11)

The maximum rate is achieved when the phase-shifts are set as θn = arg(h ju) − arg([hur]n[h jr]n). For brevity, the
above equation can be re-written as follows:

|h ju| =
√
β ju, |hur | =

√
βur, |h jr | =

√
β jr (12)

1
N

N∑
n=1

|[hur]n[h jr]n| =
√
βRIS (13)

The re-written equation would be:

RRIS (N) = log2

1 + x(
√
β ju + Nα

√
βRIS )

2

σ2

 (14)

We utilize this equation for calculating the rates for our RIS-assisted energy harvesting.

4.3. DL-based Channel Estimation for Improved EH

Table 3: Modeling Parameters of the DeNCE model.

Parameter Name Value Assigned
Initial Learn Rate 1e-3
Learn Rate Schedule ’piecewise’
Learn Rate Drop Factor 0.1
Learn Rate Drop Period 20
Shuffle ’every-epoch’
MiniBatch Size 100
Validation Frequency 30
Training Iterations 3000

In this subsection, we discuss the DNN considered in the pro-
posed DeNCE framework, which estimates the channel matrices be-
tween the UAV-CFmMIMOs and UEs (both the direct case and the
via RIS case). First, we generate the training data using the closed-
form equations discussed in previous sections. We randomly ini-
tialize the setup with different system configurations and store the
estimated channel matrices for training purposes. We generated a
data set of twenty-seven thousand samples, i.e., twenty-seven thou-
sand channel matrices, each representing the channel’s information
among every UE and every antenna of the APs, as well as the chan-
nel’s information among every RIS element and every UE. Finally,
the data set is split into the training, validation, and testing data
sets. As mentioned before, we design a CNN as the DL model in
this work, and its specific architecture is presented in Figure 5. We utilized CNN owing to its incredible capability of
automatically detecting the important features with even unstructured untabular data, which is the inherent nature of
the channel matrices. In a real-world scenario, many environmental randomnesses make it impossible to calculate the
absolute channels among the UEs and antennas. Although the closed-form equations provide a good approximation
of the channel matrix, it hardly takes environmental randomness into account. Hence, to introduce that aspect, we
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(a) (b)

Figure 6: The simulated environment, designed for DRL-based UAV-CFmMIMO deployment, includes the base station (green circle with black
border), DRL agents (green stars), UEs (red circles), different square regions (colored squares), and centroids of each region (small white cells).
The grids show the possible different states an agent can be present in, and the small white square cells present the center of each region. The
sub-figures present (a) the 10th step and (b) the 60th step in a particular training iteration.

include an environmental noise to the input data during the training phase. This inclusion of random noise resulted in
a better approximation of the channel matrices from the perspective of harvested energy. Choosing a dropout layer just
before the final fully connected layer was also crucial. We chose to have a 20% dropout, which ensured the training
did not begin to memorize the pattern for channel estimation. The values of important hyper-parameters of the DeNCE
framework are provided in Table 3.

4.3.1. Network Architecture of DeNCE
As mentioned above, we considered twenty-seven thousand different setups for data generation. The first convo-

lution layer is equipped with 3×3-sized kernels (filters) to detect low-level features of the H matrix. Setting the stride
to 1 ensures the kernel does not miss any shifting feature that can trigger the kernel, i.e., detecting the presence of
a specific feature of the H matrix. Unlike image data kernels, where well-known kernel patterns detect pre-defined
low-level features, in the case of the H matrix, the CNN model initializes the kernel weights randomly at the begin-
ning of the training phase. Through the gradient descent of the RMSprop optimizer, the kernel weights are updated
to minimize the loss. Since we utilize eight kernels (of size 3 × 3) in the first layer, the sample depth is increased.
In order to downsample the spatial dimensions of the processed sample while retaining the most important features,
we add an average pooling of size 2 × 2 and stride 2. We utilize average pooling instead of max pooling since the
detection of a feature’s presence is more important than the exact trigger of the feature. Average pooling can help to
downsample the feature map and extract a more general representation of the input sample. Another convolution layer
follows the pooling with a 3 × 3 kernel where the number of filters is increased to 16 to allow the network to learn
more complex and abstract features of the H matrix. After having another average pooling of size 2×2 (stride 2) for a
similar intention as the previous, the final convolution layer is stacked to detect the higher-level features that can help
the fully connected layer to produce the activation of the estimated channel. The final convolution has 32 filters to let
all the features be mapped into the input of the fully connected layer, which has 64 (2 × 1 × 32) processing elements.
All three convolution layers utilize ReLU activation to make sure the “vanishing gradient” problem does not happen.
We provided the detailed structure of the CNN for regeneration purposes for the other researchers since even missing
only one convolution layer will drastically reduce the performance of the network. Finally, the output layer produced
the estimated channel matrix according to the dimension of the input configuration.

4.4. DRL-based Optimal Deployment of UAV-CFmMIMO
In this part, we introduce the proposed DRL-based deployment of the UAV-CFmMIMOs in the coverage area. The

conventional UAV scheduling schemes generally assume that the locations of the goal points do not vary, meaning
the optimal trajectory predicted at the beginning of the trip remains constant. However, in real-world communication
applications, the network users (to be served by UAV APs) move along the coverage area, and the movement is not
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deterministic. Hence, the final trajectory of the serving UAVs can not be predicted at the beginning of the trip, rather
it has to be improvised depending on the current circumstances. Consequently, we develop dARL for deploying the
UAV-CFmMIMOs in different regions of the coverage area to maximize the total energy harvesting. When developing
a DRL-based model, the initial task is to design a set of key elements: the environment (where the agents will
interact and learn), the states (that represent the observation of an agent), the action (that the agents can perform),
and the reward function (that drives an agent to act intelligently). The formulation of each key element is as follows:

Table 4: Modeling Parameters of the dARL model.
Parameter Name Value Assigned

Reinforcement learning algorithm PPO
Experience Horizon 128
Clip Factor 0.2
Entropy Loss Weight 0.01
MiniBatchSize 64
Advantage Estimate Method gae
GAE Factor 0.95
Initial Discount Factor 0.995
Steps per episode 1000
Learning Rate 1e-4
Gradient Threshold 1

Environment: The environment, in our case, is the cov-
erage area where the UAV-CFmMIMOs provide the en-
ergy harvesting facility. In the simulated environment,
we abstract the intended regions in the coverage area
into different-sized square regions (presented by differ-
ent colored squares in Figure 6). We assume the UAV-
CFmMIMO agents (green stars) are placed at the charging
station (presented by a green circle with a black border
placed around the bottom-middle) at the beginning of the
DRL episode. The charging station is outside the coverage
area, so the UAV-CFmMIMO agents have to travel inside
the area. The entry point is not fixed, which facilitates the
UAVs to choose any path that leads to the region it plans
to serve at the beginning. The UEs (small red circles) are placed at random locations at the beginning of the episode
and move around the regions throughout the episode’s time steps. They can even move out of the coverage region,
making the UAV-CFmMIMO agents ignore their presence.

States: The state, in our case, includes the observation of three components: the current locations of different UEs
that are present within the intended coverage regions, the current locations of each of the UAV-CFmMIMO agents,
and the areas of each intended region.

Actions: The UAV-CFmMIMO agents can take nine different actions depending on the current observation. The
regions are divided into small grid cells, and the UAVs can move in all eight directions (forward, backward, left, right,
and four diagonal directions) to proceed from one grid cell to another. As the ninth action, the agent can decide not to
move (i.e., hovering at the same location).

Rewards: The PPO-based DRL is designed in a way to make the UAVs work collaboratively. That means the
agents will not compete with one another to increase their personal rewards, rather they will work together to maximize
the collaborative reward. The reward function is designed in a way to consider two aspects of the UEs; the first one
is the density of the UEs in each of the regions, and the second one is the population of the UEs in different regions.
Considering the density will not suffice as there might be some regions with very few UEs; however, the density might
become very high due to the even smaller area of the region. Hence, we also consider the area’s population and weigh
these two factors in the reward function.

A swarm of UAV-CFmMIMO agents starts at the base station at the beginning of each training episode and, de-
pending on the initial observation of the UEs, the agents start to move towards different regions as per the collaborative
scheduling plan provided by the dARL framework. Figure 6(a) presents the 10th step of a random episode, where the
agents can be seen to move from the base station towards the coverage regions. The goal of the swarm is to provide
continuous coverage of energy harvesting facilities to the largest portion of the UEs. The agents can move to the
centroid of each region and harvest energy for the UEs within. Depending on the real-time movement of the UEs, the
agents dynamically choose to hover in the same location or move to the centroid of a different region. Figure 6(b)
presents the 60th step of the same episode, where the agents can be seen to spread around and cover a larger area to
serve more UEs. The values of important hyper-parameters of the dARL framework are provided in Table 4.

4.5. Implementation of the EH Model
Finally, in this section, we provide a detailed description of Algorithm 1, the energy harvesting algorithm that we

considered in this work. To begin, we set up the essential system parameters (Paramsys), such as realization, transmit
power (Powtransmit), block coherence (Blockcoher), and so on, based on the needs of various experiments. We must
keep the values of some of the parameters constant across all of the experiments, as shown in Table 5. The client
IoT devices in the coverage area are placed at random, which are represented by each of the setups. We take into
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Algorithm 1: Improved energy harvesting of CURe with DeNCE & dARL

Paramsys = [Realizations, Powtransmit, Pownoise,
Blockcoher, Paramrecti f ier,Carrier];

Paramsys ← Initialize;
Matrixrate ← ϕ;
AllS etups← Number of setups;
for each setup ∈ AllS etups do

rates← ϕ;
ParamUEs ← random(CountUEs);
for each timeS tep ∈ EpiosdeS teps do

DeploymentPlanAP ← dARL(CountAP, Paramsys, ParamUEs);
Imax ← EpiosdeS teps;
while Imax do

GainChannel,RealizationChannel ← SetupFunc(ParamAP, ParamRIS );
H ← DeNCE(DeploymentPlanAP

ParamAP, ParamUEs, ParamRIS ,);
S tatTerms,HarvestedEnergy← CalculateStats(GainChannel,H,

RealizationChannel, Paramsys);
rates← SpectralEfficiency(S tatTerms,

HarvestedEnergy, β);
S olution← Feasibility(rates);
if S olution is Feasible then

Matrixrate.append(rates);
ParamUEs ← current(CountUEs);
break;

else
Imax ← Imax -1;
continue;

account a variety of setups to ensure that the performance of a particular placement is not biased. We keep a matrix of
rates across the setups for saving and later averaging the energy harvesting model’s attained rates. We feed the dARL
framework with the UEs’ information (random at the first time-step), along with the UAV-CFmMIMOs information
and system parameters. It produces an immediate deployment plan for the agents for that time-step; however, it is
updated as UEs move into different positions in the next time-step. For each timeStep of each setup a feasible solution,
given the calculated rates, is sought until Imax iterations. The S etupFunc function is used to calculate the channel gain
and realization for each setup, with parameters for the APs (ParamAP) and RISs (ParamRIS ) being given as arguments.

Table 5: Modeling Parameters of the CURe Framework.

Parameter Name Value Assigned
Pilot transmit power (W) 10ˆ(-7)
Pilot Length 5
Total power limit per AP (W) 10/U
Length of coherence block 200
Compute noise power (dBm) -96
Carrier frequency (GHz) 3.4
Number of downlink samples 25
Standard deviation of
shadow fading for LOS (dB)

3

Standard deviation of
shadow fading for NLOS (dB)

4

Then we use the DeNCE framework to estimate the chan-
nel matrices. The framework is fed with the current UAV-
CFmMIMO deployment plan along with the parameters of
UAV-CFmMIMOs, RISs, and UEs. The CalculateS tats func-
tion is then used to calculate the statistical terms and the
amount of harvested energy. The system parameters, channel
gain, and channel realization are passed as arguments here. The
SpectralEfficiency function calculates the final rates based on
the value of the large-scale fading co-efficient (β), statistical
factors, and the amount of captured energy. The rate solutions
are then checked for feasibility, and the iteration for that partic-
ular configuration is ended when feasible solutions are found.
For the following time-step, we take note of the UEs’ current
locations. As stated earlier, we store the rates of various setups
and calculate the model’s average harvested energy.
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Figure 7: Complexity analysis of the algorithm: (a) Analytical order of complexity and (b) Real execution time, w.r.t a different number of UEs
and UAV-CFmMIMOs. Comparison of the theoretical analysis and numerical evaluation of complexity through (c) Heatmap of analytical order of
complexity and (d) Heatmap of real execution time, w.r.t a different number of UEs and UAV-CFmMIMOs.

4.6. Complexity of the Proposed Algorithm

The total time complexity of Algorithm 1 will take into account the time required for DeNCE model execution, the
time required for dARL-based schedule optimization, and the time required for feasible rates obtainment. Let the time
required for CNN model execution be TC , the time for schedule optimization be TS , and the time to obtain feasible
rates is TR. Then the overall time complexity of the framework T will be O(TC × TS × TR). Since the DeNCE model
needs to calculate the rates for all the channels between each UE and antenna pair, its execution time depends on the
total number of antennas (distributed over the set of UAV APs) and the total number of UEs. Accordingly, TC can be
written as J × N, where J is the number of UEs and N is the total number of antennas carried by U number of UAV-
CFmMIMOs (i.e., if ϵ is number of antennas per UAV-CFmMIMO, then N = ϵ ×U). Next, the dARL model schedules
according to the distribution of UEs over different regions and available UAV-CFmMIMOs (assuming region areas in
the real world do not change, hence do not impact the computation time). Consequently, TS can be written as J × U.
Finally, the algorithm will require constant time to obtain feasible rates, regardless of the input size (as the parameters
AllS etups, EpisodeS teps, and Imax are fixed finite values, these can be considered constants and duly ignored because
they do not affect the overall behavior of the algorithm). Thus, TR can be written as 1. Accordingly, we get the total
time complexity, T = O((J × N) × (J × U) × 1) = O(J2 × U2), since ϵ is constant (in the real world, the number of
antennas equipped to each UAV-CFmMIMO is fixed). The time complexity of O(J2 ×U2) can be simplified as O(n2),
where n is the maximum of J and U. It is important to note that the upper bound of O(J2 ×U2) may not always reflect
the actual time complexity of the algorithm, as it only provides an upper limit.

To validate the theoretical analysis above, we experimented with different numbers of UEs and UAV-CFmMIMOs,
as presented in Figure 7. We used 11th Gen Intel(R) Core (TM) i7-1195G7 @2.90GHz with 16 GB memory to perform
the execution of the algorithm. The real execution time observed from the framework for a variable number of UEs
and UAV-CFmMIMOs is presented in Figure 7(b). The resultant curves are well within the worst-case scenario, i.e.,
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Figure 8: Empirical cumulative distributive function of spectral efficiency per user for (a) coherent linear signal, (b) non-coherent non-linear signal,
for 100 randomly deployed user equipment setups. (c) The loss calculation for the training and validation (after every 30 iterations) data through
the 3000 training iterations of DeNCE, (d)The RMSE calculation for the training and validation (after every 30 iterations) data through the 3000
training iterations of DeNCE.

O(J2 ×U2) as depicted in Figure 7(a). Since the metrics are different, we provide the heatmaps of the analytical order
(Figure 7(c)) and real execution time (Figure 7(d)) for further encapsulating the comparison. The heatmaps validate
the soundness of the theoretical analysis with respect to the real execution time of Algorithm 1.

4.7. Probable Deployment Details in Practice

This section will discuss the probable real-world deployment details of the proposed models.

i DeNCE: The model will be trained offline, with the data generated through closed-form-based equations. We
assume the training will occur at the base station, in any computer system with standard configuration. The trained
model will be loaded into the microprocessor unit equipped in the UAV with minimal testing and validation error.
Later, the UAVs will utilize the model to perform channel estimation for transmitting downlink RF signals to UEs.

ii dARL: Similar to the previous model, dARL will also be trained offline. Since the standard practice for training
the DRL agents is in the simulated environment (to avoid unnecessary expenses during the training and testing
phase), we perform the training in MATLAB utilizing the “Reinforcement Learning Toolbox” (Figure 6 presents
the simulated environment). We also assume that the base station has global observation of the coverage area, and
it continuously communicates the regions’ states with the UAVs. From the state observation, the UAVs (i.e., DRL
agents) can intelligently decide if it needs to move to another region or not, and if so, which region.

5. Evaluation, Results, and Discussion

In this section, we present the experimental setup and assess the energy harvesting performance of the proposed
combined framework. We validate the performance enhancement through DeNCE by comparing it with the spectral
efficiency per user achieved by MBS-MMF algorithm [24], CURe [19], and Level four Fully Centralized Processing
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Figure 9: Amount of harvested energy with static (central) deployment strategy and dARL-based dynamic deployment strategy with (a) coherent
linear signal, (b) non-coherent non-linear signal, (c) coherent non-linear signal, and (d) non-coherent linear signal, for 30 randomly deployed UE
setups in 8 regions having served by 5 UAVs.

(L4-FCP) [54] with respect to the empirical cumulative distribution function value of the harvested energy. For calcu-
lating the downlink RF energy harvesting from the CFmMIMO UAVs, we utilize the optimization scheme from [24].
Additionally, we present the training performance of the DeNCE framework with respect to the training and validation
loss and root mean square error (RMSE). Afterward, we validate the performance of dARL by comparing it with the
standard static central deployment of APs, with respect to the amount of harvested energy. Then we analyze the per-
formance of the dARL agents with respect to the achieved episode reward, average reward through the training, and
discounted future reward. Next, we experiment with a variable number of UEs and agents while dividing the coverage
area into different regions to observe the performance variation of the dARL framework. Finally, we experiment with
the different deployment strategies of RISs (installments of RISs) and evaluate the effect of the number of RISs on the
energy harvesting performance.

5.1. Spectral Efficiency per User with DeNCE

In this section, we assess the performance of the DeNCE framework from two perspectives; first, the evaluation of
achieved spectral efficiency, and then the validation of its training efficiency, as represented in Figure 8. We compare
the empirical cumulative distribution function of individual spectral efficiency per user, achieved by the MBS-MMF
mechanism, the CURe framework, and the DeNCE augmented versions of both of the techniques. We further compare
our results with L4-FCP, which involves sending the received pilot and data signals to the CPU for channel estimation
and data signal detection. We choose to compare with L4-FCP since Bjornson et al. advocate it as the optimal choice
among the multiple cell-free implementations analyzed [54]. We compare the spectral efficiency for the combinations
of coherent linear and non-coherent non-linear energy transmissions. In Figure 8(a), for the coherent linear energy
transmission, we observe that both techniques are achieving a higher amount of spectral efficiency compared to their
standard versions when combined with DeNCE. Similarly, in Figure 8(b), it is observed that DeNCE aided MBS-MMF
and CURe achieved higher spectral efficiency per user for the non-coherent non-linear signal as well. When the
vertical axis is at 0.1 or 0.05, representing the 90% or 95% likely SE points, respectively, CURe in combination
with DeNCE provides by far the highest efficiency among all other methods. Conversely, regular MBS-MMF has
the lowest efficiency in these scenarios. Although L4-FCP achieves higher spectral efficiency per user than even the
DeNCE augmented MBS-MMF, it performs worse than the regular CURe at the 90% or 95% likely SE points. All
the models have comparable distributions, with the coherent linear signal having a more skewed distribution than the
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Figure 10: Reward accumulation analysis for dARL: (a) Comparison of the amount of total reward achieved in different iterations in each of the
200 training episodes, (b) Comparison of average reward achieved in different iterations through the 200 training episodes, and (c) Comparison of
discounted long-term reward in different iterations in each of the 200 training episodes; with a collaborative agent set of 5 UAVs, while providing
downlink RF signals to 30 UEs in a coverage area divided into eight regions.

non-coherent non-linear signal. The upper tail of the curves shows the users with favorable channel conditions, who
achieve better spectral efficiency than other users due to their operation in the saturation area. Finally, we present the
training effectiveness of the DeNCE framework in Figures 8(c) and 8(d). For the training dataset, we generated the
closed-form-based channel estimation data using both the MBS-MMF and CURe mechanism and trained DeNCE on
both datasets, each comprising twenty-seven thousand data samples. We split the data set into training, validation, and
testing subsets, where the test set comprises 75% of the data set and the validation set comprises 10% of the data set.
From Figure 8(c), it can be observed that the training loss starts to converge at around the 1000-th training iteration.
We calculate the validation loss after every 30 iterations, and it can be observed that this loss converges around the
1500-th iteration. This signifies that the proposed model fits both the training data and the new unknown data really
well. Later, in Figure 8(d), we observe that training RMSE has moderate but tolerable magnitude, referring to the
fact that the model is introducing some sort of randomness in the form of residuals, which might mimic the natural
environmental disturbance. This helps in achieving higher spectral efficiency than standard techniques. The validation
RMSE approaches the convergence even before 1000 iterations.

5.2. Performance Evaluation of dARL

In this part, we evaluate the performance of dARL framework in deploying the UAV-CFmMIMOs efficiently.
Similar to the previous section, we perform the evaluation from two perspectives; first, by comparing the amount of
harvested energy by dARL with the standard practice of AP deployment and then by validating the DRL’s training
efficiency. We compare the amount of harvested energy for all the combinations of coherent, non-coherent, linear,
and non-linear energy transmission. It is evident from Figure 9 that the DRL-based dynamic deployment of UAV-
CFmMIMOs facilitates a substantial amount of increased energy harvesting than static (central) deployment for all
types of energy transmissions. We observe from Figure 9(a) that the highest amount of harvested energy is achieved
for the coherent linear energy transmission, whereas the lowest amount of harvested energy is observed for the non-
coherent linear energy transmission (Figure 9(d)). Moreover, we have observed that the amount of energy harvested is
higher when a coherent signal is used compared to a non-coherent signal (i.e., energy harvested is greater in Figure 9(a)
as compared to Figure 9(d), and in Figure 9(c) as compared to Figure 9(b)). The reason is that coherent signals have a
well-defined amplitude and phase, which allows them to be efficiently utilized for energy harvesting. In contrast, non-
coherent signals have randomly fluctuating amplitudes and phases, resulting in a lower amount of harvested energy.
We also increase the number of UAV-CFmMIMO APs and observe that with an increased number of elements to
deploy, dARL is facilitating exponential growth in the amount of harvested energy. Finally, for the second part of
the evaluation, we present different training observations in Figure 10. We compare the evaluation results from three
different iterations to show how quickly dARL agents learn to act towards the surging of rewards. In Figure 10(a),
we show the exact accumulated reward by the collaborative agents in each of the 200 episodes. There are 1000 steps
in each episode, and the agents try to serve all the UEs in different regions collaboratively. It can be observed from
Figure 10(a) that, in the first iteration, the reward gain was pretty low (around -500 Reward Units) till almost the
75th episode. Then it slowly increases till the 100th episode. Afterward, an unstable reward accumulation trend is
seen till the 200th episode. In the case of the second iteration, we see higher reward accumulation, meaning agents
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Figure 11: Performance evaluation of dARL w.r.t. percentage of unserved UEs throughout 100 training episodes: (a) variable number of UEs
having 8 regions and 5 DRL agents, (b) variable number of regions having 30 UEs and 5 DRL agents, and (c) a variable number of DRL agents
having 30 UEs and 8 regions.

started exploiting the learned patterns (through weights and biases of the PPO network from the previous iteration).
However, a similar unstable trend is seen throughout all 200 episodes. In the third iteration, we observe even increased
rewards with a more stable trend. In Figure 10(b), we show the average reward of the collaborative agents through
the episodes. Unlike the previous figure, here we can not actually perceive the exact increased rewards achieved
towards the 200th episode (which is almost 200 Reward Units); however, we can better see the learned behavior of
the collaborative agents. We observe that by the third iteration, agents show a pretty high average reward than the
previous iterations. In Figure 10(c), we show the learning behavior toward the discounted long-term reward for the
first three iterations. A discounted factor (DF) of value zero indicates that the current reward is prioritized, while a
DF of value one indicates that future rewards are prioritized. In practice, zero-valued DF will never learn since it only
considers current rewards, whereas a DF of one will continue to examine future rewards, possibly leading to infinity.
Since in Figure 10(c), we show the discounted long-term reward, a stable discounter reward is expected throughout
the training. We observe that the discounted long-term rewards are unstable in iterations one and two, whereas, in
iteration three, the discounted long-term rewards are moving towards a stable trend. This manifests the effectiveness
of the training stage.

5.3. Optimal Parameter Setting for dARL

In this section, we experiment with variable environmental setups to evaluate the performance of dARL with
respect to the portion of unserved UEs, as shown in Figure 11. By “unserved UEs”, we refer to the UEs which are
within the intended coverage regions, however, are not provided the energy harvesting facility (due to the absence
of APs in those regions). We show the results throughout the different episodes, with random initialization in each
episode, keeping some of the setup parameters constant. In Figure 11(a), we keep the number of regions and the
number of agents constant while we alter the number of UEs to be served. An interesting trend can be seen from this
experimentation, as the setup with the largest number of UEs has a minimal percentage of unserved UEs. In other
words, the dARL framework performs better, having a larger set of UEs to serve. The reasoning could be with the
considered setup, the “region density” and “UE count factor” of the reward function are able to schedule the DRL
agents better. The percentage decreases to almost zero by the 100th training episode. In the case of 30 UEs, a slight
converging behavior can be seen from the 20-25% range. In Figure 11(b), we keep the number of agents and the
number of UEs constant while we vary the number of regions. We observe that by dividing the coverage area into a
higher number of regions (i.e., 10), the percentage of unserved UEs increases. That is reasonable since the number
of UAVs is half the number of regions to be served. However, after around 80 episodes of training, the unserved
UEs percentage is reduced to around 30%, meaning the designed reward function ensures that the densest and most
populated regions are covered. On the other hand, we observe almost similar performance from dARL with the setup
we considered in Figure 11(b), having divided the coverage area into 6 and 8 regions. The number of regions and
the number of agents considered are correlated, which was evident in the last experiment. In Figure 11(c), we keep
the number of regions and the number of UEs constant while we alter the number of agents. It can be observed from
Figure 11(c) that a higher number of agents are facilitating a higher percentage of UEs being served. In the case of 7
agents, we observe that close to 80% of the UEs are served, even in the first episode. That is apparent as the dARL
agents might learn to just hover over different regions, each in a separate area, and still get the reward as all (or most
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Figure 12: Comparison of different RIS deployment strategies with (a) 16 APs and (b) 25 APs, having a variable number of RISs. Evaluation of
the effect on energy harvesting performance having (c) 9 RISs and (d) 16 RISs, with a variable number of meta elements.

of) the regions are served. Conversely, in the case of 3 agents, we observe that the unserved percentage of UEs is more
than 50%, even after 100 training episodes. This emphasizes the importance of choosing the right parameter setting
for the training environment.

5.4. Effect of RIS deployment and reflecting elements

Since RIS is an immobile smart material sheet that can be installed on walls, buildings, or ceilings [55], we
conducted experiments to determine the best deployment strategy for it using three different approaches: edge, central,
and hybrid deployment. In edge deployment, all RISs are placed at the edges of the coverage area, while in central
deployment, they are placed in the center of the coverage regions. A hybrid deployment is a mixed approach where
half of the RISs are placed at the edges and the other half in a centralized fashion. Figure 12 shows that the hybrid
deployment strategy is optimal for all RIS options with 16 APs (Figure 12(a)) and 25 APs (Figure 12(b)). It can also
be observed that the hybrid deployment strategy becomes more prominent with an increasing number of APs in the
coverage areas. We also experimented with different numbers of meta elements in the RISs, assisting varying numbers
of APs. Figure 12(c) shows that with 9 APs, the harvested energy is low, even with a higher number of meta elements
in each of the 9 RISs, while with 16 APs, the amount of harvested energy seems to have an upward trend with the
increasing number of elements in the RISs. In comparison, Figure 12(d) demonstrates a steeper curve as the number
of RISs increases to 16, assisting 16 APs.

6. Literature Review

In recent years, the downlink RFEH with mMIMO has become an extensively researched subject in the scientific
community. To name a few, Chen et al. examined the enhancement of energy efficiency for energy harvesting
with mMIMO while ensuring satisfactory QoS via energy beamforming in [56]. Amarasuriya et al. investigated
the performance of WPT for multi-cell multi-way mMIMO relaying by deriving the achievable sum rate vs. the
harvested energy trade-offs [57]. The authors in [16] study mMIMO’s energy harvesting capabilities by optimizing
the minimum collected energy among energy-requiring devices while maintaining a minimum achievable rate for
information-requiring devices. There has also been a lot of research into energy harvesting utilizing CFmMIMO. Like
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in [17], Ngo et al. investigate the performance of CFmMIMO with conjugate beamforming in downlink by taking
into account the combined effects of channel estimation, power control, and pilot sequence nonorthogonality. In [58],
Nayebi et al. explore the downlink performance of CFmMIMO with zero-forcing (ZF) precoding and conjugate
beamforming and present a low-complexity power allocation method. To enhance the performance of CFmMIMO
at a low and affordable cost, RISs have been introduced with CFmMIMO systems. While most works concentrated
on instantaneous performance measurements and depended on alternating optimization techniques ([59, 60]), Noh
et al. proposed a unique two-step approach that offers long-term passive beamformers at RISs and short-term active
precoders and long-term power allocation at APs to optimize the lowest possible rate.in [61] to deal with the huge
computational complexity and signaling overhead imposed. To maximize the minimum achievable rate among users,
Jin et al. proposed a joint optimization algorithm in [62] for RIS-aided CFmMIMO systems, maintaining transmit
power constraints at different APs. For investigating the influence of the CSI uncertainty on IRS-assisted cell-free
networks, Xie et al. adopt a stochastic programming method in [63] by maximizing the expectation of the sum rate,
which ensured robust performance over the average. Elwekeil et al. introduced a novel scheme for power control
in CFmMIMO that supported ultra-reliable low-latency communication applications for both traditional ground users
and unmanned aerial vehicles in [64]. To efficiently allocate resources for RIS-assisted WPT of IoT, Zhu et al.
introduce a new scheme to maximize the energy efficiency of the system by optimizing the time allocation, power
splitting ratio, and reflection coefficients of the RIS [65]. Chu et al., on the other hand, propose a RIS-assisted
wireless powered sensor network (WPSN) for IoT [66], which reduces energy consumption and cost while ensuring
reliable communication between the sensors and the base station. Recently, Zhu et al. proposed a robust beamforming
design for SWIPT in terahertz (THz) systems assisted by RIS. The proposed design aims to maximize the secure
communication rate of the system while considering the non-linear energy harvesting model at the receiver [67].
However, none of the existing works incorporate the benefits of CFmMIMO, UAV-AP, and RIS technologies together.

Contrary to previously mentioned studies, Shrestha et al. evaluate the effectiveness of simultaneous wireless
information and power transfer (SWIPT) for training-based CFmMIMO in [68]. They did, however, assume that
information and energy users are separated. Similarly, Alageli et al. [69] investigated SWIPT with CFmMIMO,
in which only the energy users harvest energy while the information users do not. In contrast, we address energy
harvesting for all types of users, regardless of their primary requirement, by considering power control for maximizing
the minimum uplink spectral efficiency for wireless power transfer using CFmMIMO, following the methodology of
Demir et al. [24]. Furthermore, we present the concept of using RIS to support the CFmMIMO placed on UAV access
points for increased energy harvesting performance. To the best of our knowledge, this is the first effort that combines
all three methods for RFEH.

As mentioned earlier, channel estimation plays a crucial role in energy harvesting. Jiang et al. proposed using a
trained deep neural network (DNN) model along with a pilot signal for efficient underwater channel estimation [43].
The authors of [44] recommended using a DNN model to utilize channel correlation in both frequency and time
domains to conduct channel estimates for the standard of IEEE 802.11p. Furthermore, the authors in [45] evaluated the
implications of the channel estimating phase for a wireless energy transfer system and proved that a downlink channel
estimate is required to collect energy feedback information. A DNN structure produces better channel estimates than
standard estimations like LS and LMMSE. However, none of the works considered a system with UAV-CFmMIMO
and RIS-aided energy harvesting.

One of the major challenges for UAVs is the limited battery capacity, which revolves around the technical speci-
fication of the same. Thus for a swarm of UAVs, performing a global task together, an effective scheduling technique
is pivotal for continuous operation without interruption. RL has been regarded as a prominent tool to surpass central-
ized control and allow local intelligence to accomplish collaborative global tasks in the UAV swarm domain. Like
in [49], Bouhamed et al. proposed an RL-based framework that enables UAVs to autonomously arrange their sched-
ules in order to cover the maximum number of pre-scheduled events in a particular geographic area but during a
pre-determined time horizon. Ferdowsi et al. proposed a deep Q-learning (DQN)-based optimal scheduling policy for
UAVs in the UAV-assisted wireless network by formulating the scheduling policy with a convex optimization-based
solution in [70]. None of these works consider the mobility of the goals. Although Nguyen et al. proposed a DRL-
based model for scheduling UAVs in device-to-device communications with a random walk of users in [71], they did
not consider multiple UAVs collaboratively completing the task of energy harvesting. In this work, we propose a
model for a swarm of UAVs that collectively try to achieve the energy harvesting goal.
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7. Conclusion

In this work, we provide a comprehensive RF energy harvesting framework that takes advantage of the combined
benefits of UAV-mounted CFmMIMO and RIS. The UAV-CFmMIMOs give a strong LoS signal in the broad cov-
erage area, taking advantage of mobility in a cell-free fashion. Accordingly, we first devise a method for sending
directive signals to target devices using RISs, which help with energy harvesting and information transfer. The em-
pirical evaluation findings have validated that our framework can deliver a higher level of energy harvesting than the
MBS-MMF [24]. For further improvement of energy harvesting performance, we propose to utilize the benefits of DL
in estimating the channels, which is crucial in energy harvesting. Our analytical results confirm that the data-driven
approach yields a considerably higher amount of energy harvesting compared to the traditional LS and LMMSE chan-
nel estimation techniques. Finally, to optimize the cost and augment the effective energy harvesting of the UEs, we
propose DRL-based dynamic scheduling of UAV-CFmMIMOs, where the agents collaboratively maintain continuous
coverage of downlink energy harvesting by observing the movement of the UEs in the coverage area.
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