
BIOCAD: Bio-Inspired Optimization for
Classification and Anomaly Detection in Digital

Healthcare Systems
Nur Imtiazul Haque∗†, Alvi Ataur Khalil∗†, Mohammad Ashiqur Rahman†,

M. Hadi Amini‡, Sheikh Iqbal Ahamed§
†Analytics for Cyber Defense (ACyD) Lab, Florida International University, FL, USA

‡Knight Foundation School of Computing and Information Sciences, Florida International University, FL, USA
§Department of Computer Science, Marquette University, WI, USA

†{nhaqu004, akhal042, marahman}@fiu.edu, ‡moamini@fiu.edu §sheikh.ahamed@marquette.edu

Abstract—The modern smart digital healthcare system (SDHS)
is leaning towards automation of patient disease monitoring and
treatment with the advent of wireless body sensor networks
(WBSN) and the internet of medical things (IoMT). However,
the open communication network for sensitive medical data
transfer is giving rise to vulnerabilities and security concerns. To
prevent adversarial manipulation of sensor measurements, SDHS
IoMT controllers leverage anomaly detection systems on top of
the disease classification systems. Machine learning (ML) is one
of the most effective techniques for providing experience-based
automated decision-making models. These models generalize
well to produce the expected output for the unseen inputs
from the learned patterns. Therefore, ML-based models are
currently being adopted to automate the anomaly detection and
disease classification tasks of SDHS. In this work, we consider a
SDHS that uses supervised ML models for patient status/disease
classification and unsupervised ML models for anomaly detection.
However, the performance of the ML models largely depends on
hyper-parameter tuning. Finding the optimal hyper-parameter
is a challenging task, and it becomes more difficult and time-
consuming in high-dimensional feature space. In this work, we
propose BIOCAD, a comprehensive bio-inspired optimization
framework for SDHS data classification and anomaly detection.
The framework leverages a novel fitness function for unsu-
pervised anomaly detection ML models. We experiment with
state-of-the-art datasets - the Pima Indians diabetes dataset, the
Parkinson dataset, and the University of Queensland vital signs
(UQVS) dataset for validating our proposed strategy.

Index Terms—Healthcare Security, machine learning, anomaly
detection systems, hyperparameter Optimization

I. INTRODUCTION

The world is currently fighting with COVID-19, a lightless
adversary and every day, thousands of people are getting
affected by it throughout the world. The healthcare consultants,
nurses, and volunteers are fighting heart and soul to ensure
treatment for all patients. However, due to the contagious
nature of the virus, the frontliners are also getting affected,
which increases the number of patients even more. The need
for global acceptance of a smart digital healthcare system
(SDHS)-enabling automated medication, treatment, and pill

∗
Haque and Khalil are the co-first authors of this paper.

dispensers is obvious. Besides, the healthcare sector is ex-
periencing high costs due to patient monitoring, consultation,
hospitalization, and treatment, which is proven from almost $4
trillion patient treatment expenditure in the US as reported in
2019 [1]. To reduce this cost and ensure pervasive healthcare,
the modern SDHS uses the Internet of Medical Things (IoMT)
network to collect sensor measurements from wireless body
sensor network (WBSN) and process them in a controller
for generating control signals, which eventually actuates the
implantable medical devices (IMDs) for automated medical
delivery [2]. Identifying the right disease is mandatory for
delivering proper medication. Hence, machine learning (ML)-
based classification model (CM) is mostly used in the con-
troller end of the contemporary SDHS for their high prediction
accuracy.

The SDHS sensors cannot be blindly trusted due to the
increasing vulnerability and attack surface of the WBSN. Most
popular cyberattacks in the healthcare systems includes hard-
ware Trojan [3], malware (e.g., Medjack [4]), Sybil attacks us-
ing either hijacked IoMT [5] or single malicious node [6], DoS
attacks [7], and man-in-the-middle (MITM) attacks [8]. Recent
statistics show that cyberattacks in SDHS are surging and
exploiting the security and privacy of the patients. Healthcare
organizations are experiencing a 45-percent increase in cyber-
attacks with 626 weekly attacks since November 2020 [9],
[10]. In June 2020, a hospital in Colorado was affected by a
ransomware attack which resulted in five years worth of patient
data inaccessible [10]. The University of Vermont Medical
Center (UVMC) is losing $1.5 million per day in revenue and
extra expenses due to recent cyberattacks and estimates to $63
million more before resolving the issues [11]. In addition, a
security breach in the Blackbaud cloud service provider made
more than 46 hospitals and health systems expose 1 million
patients information. It is imperative to identify sensor data
alteration to save patients’ life. Hence, detecting cyberattacks
is mandatory in a safety-critical system like SDHS, which
creates the need for an anomaly detection model (ADM) with
zero-day attack detection capability.

Current research focuses on getting the best out of the ML



algorithms by finding the optimal hyperparameters using var-
ious optimization techniques [12]. Optimization of ML refers
to adjusting the underlying hyperparameters to minimize a cost
function using an appropriate optimization model (OM). In this
work, we propose Bio-Inspired Optimization for Classification
and Anomaly Detection ( BIOCAD) framework that optimizes
CM and ADM of the SDHS using OMs. Our proposed
framework utilizes ML-based ADMs that detects alteration in
SDHS data before providing automated medication and alarms
the system administrators for taking necessary measures.

Methods for solving optimization problems are an active
research topic. New optimization algorithms can be either de-
terministic or stochastic. The deterministic algorithms produce
identical output as the input. On the other hand, the stochastic
algorithms incorporate pseudorandomness for learning un-
certainties [13]. As deterministic algorithms require massive
computational efforts to solve optimization problems, they fail
with increased problem size. Hence, the motivation behind
choosing bio-inspired stochastic optimization algorithms is the
computational efficiency of these models, unlike deterministic
approaches. Although state-of-the-art problem-solving strate-
gies include both the Exact approach (i.e., logical program-
ming) and the Heuristic approach, the latter performs better
in solving hard and complex optimization problems [14]. The
bio-inspired algorithms (BA) are unique heuristic approaches
that imitate nature’s strategy as a process of constrained
optimization.

Our proposed framework leverages some of the prominent
algorithms from the Swarm-based algorithms for hyperparam-
eter optimization, as they complete the tasks even if some
of the agents fail. Also, there is no central control, and the
solutions are more emergent rather than pre-defined. In this
work, we consider grey wolf optimization (GWO), whale
optimization (WO), and firefly optimization (FO) algorithms
for optimizing our support vector machine (SVM), neural
network (NN)- based CM, and one-class SVM (OCSVM),
Density-based spatial clustering of applications with noise
(DBSCAN)-based ADM models to assess the performance of
our framework.

In summary, our contributions are four-fold:

• Investigating various ML algorithms, we design a real-
time SDHS deploying ML-based CMs and ADMs.

• We evaluated the proposed BIOCAD framework based
on it’s classification, anomaly detection capability and
scalability.

• We propose a novel fitness function for hyper-parameter
optimization of ADMs to detect zero-day attacks.

• We verify our proposed framework using three state-of-
the-art datasets.

Organization: The rest of the paper is organized as follows:
the recent related works are discussed in Section II. We
discuss adequate background information in Section III. We
introduce our proposed BIOCAD framework in Section IV. In
Section V, we discuss the technical details of the frameworks
and the complete analysis of our algorithms. The empirical

analysis and findings are formulated in Section VI. Finally,
we conclude the paper in Section VII.

II. RELATED WORKS

Safety critical systems like SDHS are getting a lot of
research focus. The researches include attack synthesis, threat
analysis, and proposing IDSs [15]–[18]. Contemporary CMs
and ADMs leverage several mechanisms to optimize the hyper-
parameters of the underlying ML models. The hyperparameter
optimization techniques reduce the overfitting problem and
enhance the accuracy of the models. Dwivedi et al. proposed
an intrusion detection system by utilizing the grasshopper
optimization algorithm (GOA), where an ensemble feature
selection method is used for ranking the top features before
optimization [19]. They obtained high detection and accuracy
rate as well as a low false alarm rate in NSL-KDD and
KDD Cup 99 data. Falaghi et al. proposed an ant colony
optimization (ACO)-based classification model for solving
the fuzzy multi-objective problem, which can produce better
subsets and achieve higher classification accuracy [20].

Several researchers attempted to ameliorate the performance
of SVM for medical data classification by proposing novel
BAs. Shen et al. proposed a novel fruit fly algorithm (FFA)
for both parameter and classification optimization of SVM
and obtained 96%-97% accuracy for various medical data
classification [21]. On average, their proposed approach has
taken 170 seconds of CPU time to complete the optimization
task. Their evaluation result shows that the proposed FFA
algorithm works significantly better than PSO, GA, BFO,
and grid search technique, concerning execution time and
performance measure. Ye et al. proposed a novel GA, com-
bining PSO and FOA [22]. Their algorithm shows 98%-99%
accuracy for medical data diagnosis. Wang et al. proposed
a modified WO algorithm, amalgamating muti-swarm and
chaotic mechanisms, and found accuracy in between 98%-99%
for several medical datasets [23]. Contrasting with GA, BFO,
WO, and PSO, they have shown that the proposed algorithm
provides better performance and scalable execution time.

Al Shorman et al. proposed a novel mechanism for de-
tecting IoT botnet attacks using OCSVM and utilized GWO
to optimize the underlying hyperparameters in [24]. The
experimental results confirm that the proposed GWO-OCSVM
outperforms regular OCSVM, Local Outlier Factor (LOF), and
Isolation Forest (IF) algorithms concerning true positive rate,
false-positive rate, and geometric mean. Ch et al. optimized
the parameters of SVM for determining and forecasting the
incidence of malaria in [25] by coupling it with FO. They
compared the performance of the proposed FO-SVM with
regular SVM, Auto-Regressive Moving Average (ARMA), and
Artificial Neural Networks (ANN) method, and the results
show that FO-SVM can forecast the incidences more accu-
rately than the other methods.

All the anomaly detection works mentioned above consider
known attack data, often along with benign data, to identify
anomalies. Despite our ADM is solely trained on benign data,
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Fig. 1. Schematic diagram of the optimization algorithms of the BIOCAD framework.

it performs significantly well on anomaly/zero-day attack de-
tection. In our approach, we leverage several BAs to optimize
the hyperparameters of the underlying ML models of our
ADMs and CMs.

III. PRELIMINARIES

Several ML models and OMs are leveraged in this work.
For anomaly detection, our framework uses a novelty detection
ML model- OCSVM and a clustering-based ML model- DB-
SCAN, while for disease/patient status prediction, the frame-
work leverages two supervised ML models- SVM and NN.
Additionally, three state-of-the-art bio-inspired optimization
algorithms - FO, WO, and GWO are utilized in this work for
optimizing the hyper-parameters of the considered ML models.
In this section, we provide some insights into the considered
models to facilitate the readers’ comprehension.

A. One-Class Support Vector Machine

The OCSVM solves a one-class classification problem by
splitting the target instances from outlier instances [26]. Let,
xi, i = 1, ... , n are the training instances in the input space.
OCSVM works based on the principle of differentiating the
outlier samples from the target ones. Suppose, di, i = 1, .., n
are benign training examples in D input space, where, ψ(di)
is the transfer function for non-linearly mapping an sample di
from D into F feature space. The main objective of OCSVM
is to build a hyperplane in the feature space, F to maximize
a margin from the origin. Lets say, H :< w,ψ(d) > −T = 0
resembles the hyperplane, where, w is denotes the normal to
the hyperplane, H and T is a threshold. The threshold T can
be determined by solving the following optimization function.

min
w∈F,ξ∈Rn,T ∈R

1

2
||w||2 + 1

νn

∑
i

ξi − T (1)

subject to, < w,ψ(di) >≥ T − ξi.
Here, ξ are called the slack variables, which are used to

impose an equality constraint from an inequality one. The
ν parameter indicates the upper and lower bounds on the
percentage of outliers in all samples used as support vectors.
Based on the Lagrangian dual problem, the OCSVM’s dual
problem can be obtained. It can be formulated as follows:

max
a
−1

2

n∑
i,j=1

µiµjk(di, dj) (2)

such that
0 ≤ µi ≤

1

νn
(3)

and
n∑
i=1

µi = 1 (4)

Here, k(di, dj) corresponds to the kernel function, which
outcomes same value as < ψ(di, dj) >. After obtaining the
optimal solution, µ, putting T =< w,ψ(di) >, the threshold
can be determined, where, w =

∑n
i=1 µiψ(di) and di denote

a samples whose µi ∈ (0, 1
νn ). The samples, with µi > 0

are referred support vectors. The OCSVM decision function
kf(d) can be obtained by using appropriate kernel function, as
shown below:

kf(d) =< w,ψ(di) > − =

n∑
i=1

αik(di, d)− T (5)
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For benign (positive) samples, the decision function comes
up with a positive or zero value, while anomalous (negative)
samples show a negative outcome.

B. DBSCAN

The DBSCAN algorithm demonstrates optimistic perfor-
mance for identifying abnormality in the data based on the
deviation from learned pattern [27]. The DBSCAN algorithm
uses a pair of hyperparameters- the minimum number of points
(minPts) and epsilon(ε). At first, the algorithm attempts to
find the points in the epsilon neighborhood of every point. The
points having more than minPts neighbors in the ε radius are
denoted as core points. Then the components of core points
on the neighbor graph are identified (all non-core points are
ignored in this phase). Finally, the DBSCAN algorithm assigns
each non-core point to a nearby cluster if the cluster is an ε
neighbor; otherwise, it assigns it to noise. In this work, we
consider the noise points as anomalous data.

C. Support Vector Machine

SVM is a supervised learning algorithm, which is used
for separating different classes by drawing hyper-planes like
OCSVM. Unlike OCSVM, this algorithm creates the hyper-
plane to differentiate the support vectors of two different
classes. For solving a multi-class classification problem, SVM
uses a one-vs-all approach [28]. A specialized technique
referred to as kernel trick is applied to obtain the large
margin hyperplanes for constructing nonlinear classifiers. The
technique is formally similar to the simpler version, with a
minor modification of the dot products by a nonlinear kernel
function, enabling the modified SVM to adjust the maximum-
margin hyperplane in a new feature space. The SVM model’s
optimal decision boundary can be obtained by tuning two
hyperparameters- γ and ν.

D. Neural Network

NN refers to the ML model that learns nonlinear patterns
from myriad feature relationships set. It contains a network of
nodes, where the nodes are arranged according to particular
ways depending on the application. Patterns include layers,
starting from the input layer to the output layer and the variable
number of hidden layers in between. The number of hidden
layers and the number of nodes in each hidden layer play
a crucial role in the neural network’s performance. For each
node of the NN model, the sum of products of weight and
output of the previous nodes added with the bias work as the
input. To add non-linearity in the model, the output of each
node is passed through an activation function. For drawing
nonlinear boundaries in the feature space to non-linearly map
between the input features and target, activation function plays
a vital role. Learning rate is the hyperparameter that controls
the updating magnitude of the model parameters in response to
the estimated error. We leveraged RMSprop [29] for adaptively
choosing and tuning the earning rate. For generalizing the
model and reducing overfitting with the training samples,
the regularization process is also applied. For achieving the

optimal nonlinear boundaries from the NN model, the number
of nodes and the number of hidden layers have to be tuned.

E. Grey Wolf Optimization Algorithm
Grey wolf optimization (GWO) is one of the recent promi-

nent meta-heuristic optimization algorithms presented by Mir-
jalili et al. in [30]. This optimization algorithm is modeled
after the two most important survival aspects of the grey
wolves, the hunting mechanism and the leadership hierarchy.
For simulating the leadership hierarchy, four varieties of grey
wolves, namely the α, β, δ, and ω wolves are used. The
hunting of grey wolves pack has three keys stages- looking for
prey, encircling prey, and attacking prey. This is also simulated
in the GWO algorithm. The mathematical model of the GWO
algorithm is described in the subsequent paragraphs.

For mathematically modeling the social hierarchy of the
wolves pack, multiple candidate solutions are considered. The
best-observed solution is considered as the α. Consequently,
the second and third observed optimal solutions are called β
and δ. The ω wolf represents the rest of the candidate solu-
tions. In the GWO algorithm, α, β, and δ wolves (solutions)
guide the hunting scheme (optimization). The ω follow the
three most optimal wolves (solutions).

The grey wolves encircle the target prey at time of hunting.
Following equations are proposed for mathematically model-
ing the encircling behavior:

~Dgrw = | ~Lgrw. ~XPr(t)− ~X (t)| (6)

~X grw(t+ 1) = ~XPr(t)− ~Kgrw. ~Dgrw (7)

Here, t denotes the current iteration, ~Kgrw as well as ~Lgrw
signifies the coefficient vectors, ~XPr corresponds to the prey’s
position vector, ~X represents the current position vector and
finally, using ~X grw, GWO determines new position vector of
a grey wolf. The co-efficient vectors ~Kgrw and ~Lgrw follows
the following equation:

~Kgrw = 2~k.~r1 − ~k (8)

~Lgrw = 2. ~r2 (9)

The ~k vectors’ component are linearly altered from 2 to 0 over
iterations and ~r1, ~r2 are random vectors (0 ≤ r1, r2 ≤ 1). The
similar idea can be utilized to search upto n dimension space,
and the grey wolves will follow the best solution agent and
will move around it in the hyper-spheres.

Grey wolves possess the ability to track and encircle prey. In
an arbitrary search space, though, there is no information about
where the optimum (prey) can be found. It is believed that α
(the best agent solution), β, and δ have greater knowledge of
the possible position of prey. It is actually the mathematical
replication of the stalking grey wolves’ behavior. Therefore,
the current best three solutions are stored and the other
candidates update their positions based on the position of the
best search agents. The proposed equations in this regard are:

~Dα
grw

= | ~L1
grw

. ~Xα − ~X|, ~Dβ
grw

= | ~L2
grw

. ~Xβ − ~X|,
~Dδ
grw

= | ~L3
grw

. ~Xδ − ~X|
(10)
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~X1

′

= ~Xα − ~K1
grw

.( ~Dα
grw

), ~X2

′

= ~Xβ − ~K2
grw

.( ~Dβ
grw

),

~X3

′

= ~Xδ − ~K3
grw

.( ~Dδ
grw

)
(11)

~X grw(t+ 1) =
~X1

′

+ ~X2

′

+ ~X3

′

3
(12)

The hunting step is terminated by committing the attack
as soon as the prey becomes stationary. The value of ~k is
decreased for mathematically modeling this approach. This
also decreases the fluctuation range of ~Kgrw by k. So, ~Kgrw is
a randomly chosen value in the interval [-2k, 2k]. Also, with
the increase of iterations, the value of parameter a decreases
from 2 to 0. When ~Kgrw’s random values are in the interval
of [-1,1], the next position of the agent can be anywhere
between its current position and the position of the optimal
solution (prey). The wolves are obliged to attack the prey when
|Kgrw| < 1.

Grey wolves search mainly using the α, β, and δ positions.
They isolate to hunt for prey and then unite to attack the prey.
A random value out of the [-1,1] range is used with ~Kgrw
for ensuring model divergence, which enables search agents
to diverge from the prey. +1 or less than -1 is utilized to force
the search agent to diverge from the prey. This encourages
exploration and enables the GWO algorithm to search around
the global space. ~Lgrw is another GWO aspect that promotes
exploration. The ~Lgrw vector contains an arbitrary value rang-
ing between 0 to 2. Random wights are assigned to the prey
by this parameter to emphasize (Lgrw > 1) or deemphasize
(Lgrw < 1) the prey’s influence in deciding the distance
stochastically. This ensures that the GWO will have random
behavior during the optimization, preferring exploration and
avoiding the local optima problem.

F. Whale Optimization Algorithm

Mirjalili et al. proposed the WO algorithm based on the
unique foraging behavior of the humpback whales [31]. The
humpback whales target the small fishes swimming near the
water surface, and this hunting behavior is termed bubble-
net feeding. They create ’9’ or circle-shaped bubbles for
hunting, which are named as ’double loops’ and ’upwards
spiral respectively [32]. The mathematical representation of
the behavior serves as a meta-heuristic optimization algorithm,
which can be leveraged to solve various intricate problems.

The WO algorithm is a three-stage process in which the
prey encircling phase identifies the prey’s location, bubble-net
attacking is the exploitation phase. In contrast, prey searching
is the exploration phase for finding the optimal prey location.
Using a similar strategy, the global optima of an optimization
problem can be searched. The mathematical modeling of the
three phases of the WO algorithm is discussed as follows.

1) Prey encircling: In the prey encircling phase, WO finds
out the location of the prey assuming close proximity of the
target. Several humpback whales participate in this process and
the path of the best agent is followed by the rest. Equation 13

illustrates the mathematical form of the aforementioned be-
haviour.

~Dwh = |~Cwh ~Xwhbest(t)| − ~Xwh(t) (13)

~Xwh(t+ 1) = ~Xwh(t+ 1)− ~A. ~D (14)

Here, ~Xwhbest(t) represents the position of the best agent in
the current iteration, ~Xwh(t) denotes a position vector, and
the co-efficient vectors ~A and ~C can be determined by the
following equations:

~Awh = 2 ~Awh.~rwh − ~Awh (15)

~Cwh = 2.~rwh (16)

Where, ~Awh is linearly altered from 2 to 0 and ~rwh

corresponds to a random vector (0 ≤ ~rwh ≤ 1). It can be
proven that regulating ~Awh and ~Cwh, overall search space near
agents can be explored.

2) Bubble-net attacking: Bubble-net attacking is the ex-
ploitation phase, which follows two different mechanisms.
Shrinking encircling In the shrinking encircling mechanism,
~A is randomly adjusted in the interval [-a, a]. The value of a

is lowered linearly from 2 to 0 over time. This process allows
a linear movement throughout iterations.
Spiral updating position The spiral updating equation imitate
a helix-shape progression of the agents, which can be repre-
sented as:

~Xwh(t+ 1) = ~D′
wl
.ebl.cos(2πl) + ~Xwhbest(t) (17)

Here, ~D′
wl

= | ~Xwhbest(t) − ~Xwh(t)|, which denoted the
distance from prey for i-th whale, b is a logarithmic spiral
shape constant, and −1 ≤ l ≤ 1 is a random value.

Both of the aforementioned mechanisms are simultaneously
followed based on a probability value, p.

3) Prey searching: Prey searching is the exploration phase,
which can be attained by varying ~Awh. The value of ~A is out
of [-1,1] interval, which ensures exploring remote places from
the reference agent. The mathematical form of exploration can
be expressed as follows.

~Dwh = |~Cwh. ~Xwhrand ∗ (t)− ~Xwh(t)| (18)

~Xwh(t+ 1) = ~Xwhrand(t+ 1)− ~Awh. ~Dwh (19)

Here, ~Xwhrand is a random vector selected from the current
population.

G. Firefly Optimization Algorithm

FO is another bio-inspired algorithm for solving complex
optimization problems, developed by Xin-She Yang [33]. The
algorithm is established based on the behavior of the fireflies,
which approaches towards the direction depending on the
luminosity of other fireflies. The FO algorithm utilizes three
basic principles.
• The attraction of fireflies towards other brighter ones does

not dependent on sex as all fireflies are unisex.
• The encoded objective function determines the brightness

of the fireflies.
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Fig. 2. Proposed BIOCAD framework.

• The brightness and attractiveness decrease with the in-
crement in the distance, and the attractiveness directly
corresponds to brightness.

In summary, a firefly moves towards the brighter one, and if
there is no brighter one, it moves randomly. The mathematical
representation position update of the firefly maintains the
following equation:

~X ffi (t+ 1) = ~X ffi (t) + γffe−βr
2
ij ( ~X ffj (t)−

~X ffi (t)) + αff (t)εffi (t)
(20)

The right hand side of the expression is due to the interest
towards ~X ffj . The last expression is a randomization term with
αff (t) being a randomization parameter with 0 ≤ αff (t) ≤ 1
and εffi (t) signifies a vector of several random values selected
from a normal or some other distribution during the time, t.
The exploitation parameter, αff (t) can be expressed as:

αff (t) = βff (t)δff (t) (21)

Here, 0 < δff (t) < 1

IV. FRAMEWORK

The basic architecture of our proposed BIOCAD framework
is presented in Fig. 2. Here, the controller module leverages
the historical patient vital signs data to train learning models
and functions as an optimized classifier and anomaly detector.

The WBSN measures patients’ vital signs through a plethora
of sensors and provides real-time patient data to the controller
module. The controller module includes two sub-modules: the
classifier and anomaly detector (CAD) module and the bio-
inspired optimization (BIO) module.

The CAD module processes the vital signs dataset provided
by WBSN and chooses SVM or NN as CM, depending on
the performance, for classifying diseases for the patients in
real-time. On the other hand, the CAD module uses either an
OCSVM model or a DBSCAN model for detecting anomalies
in the patient vital signs dataset, which can occur due to
measurement error or intentional data alteration. The SVM has
two hyper-parameters: C and γ. For each misclassified data
point, the C parameter adds a penalty. When C is minimal,
the penalty for misclassified points is tiny, so a large-margin
decision boundary is selected at the cost of a higher number
of misclassifications. The γ parameter regulates the influence
distance of a single training point. A low γ value means
a strong similarity radius, implying that more points are
clustered together. For high γ values, the points must be very
similar to each other to be considered as the same category.
As a consequence, models with high γ values are vulnerable
to overfitting.

Two key hyperparameters that influence the performance
of the NN model are the number of hidden layers and the
number of nodes in each of the hidden layers. A large value
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for the number of hidden layers is appropriate for complex
environments, where the model will extract increasingly high-
level representations from the data. The inconsistency of the
number of hidden layers with the complexity of the problem
makes the network overfitted for the training data. Moreover,
the number of nodes in the hidden layers must be in the range
of input layer size and output layer size.

Two important hyperparameters for OCSVM are: ν and
γ. The regularization coefficient is represented by the ν
parameter, which controls the upper bound of rejected target
data. During the training phase of OCSVM, this parameter is
often tuned for rejecting the noise in the target data. Proper
choice of ν allows OCSVM to remove distorted training data
from the target set correctly, whereas improper ν causes the
decision boundary to be skewed by noisy target data or rejects
too many target data. The γ parameter in the OCSVM operates
exactly similar to the γ parameter in the SVM. The DBSCAN
model also has two hyperparameters that have a major impact
on the performance of the model. These are ε and the minimum
number of samples. The ε refers to the radius around the core
points that defines the cluster boundary. If the radius is too
high, the model will develop a deficient number of clusters.
For the worst-case scenario, it will develop only one cluster.
As a result, it will fail to find the noisy samples as an anomaly
detector model. For the minimum number of samples, the
higher value will make smaller clusters, and there will be a lot
of actual samples that will be considered as noise. So, it will
detect a lot of false-positive samples as an anomaly detector.

The BIO module comes into the picture for optimizing
all these important hyperparameters that influence both the
CMs and ADMs. This module leverages three bio-inspired
optimization techniques, the GWO algorithm, the WO algo-
rithm, and the FO algorithm to tune the hyperparameters. The
controller module delivers the output from the CAD module
to the network controller, which is responsible for detecting
anomalies. Besides, the disease classification data is provided
to the health care provider center for patient-related decisions
and medications. Thus, our proposed framework effectively
contributes to both the healthcare and cyber-security domains.

V. TECHNICAL DETAILS

In this section, we discuss the technical details of our
proposed BIOCAD framework. The overall framework can
be divided into three components: classification unit (CU),
anomaly detection unit (ADU), and optimization unit (OU).
A detailed analysis of the framework components is explained
based on Algorithm 1.

A. Classification Unit (CU)

The framework mainly figures out the best ML models
and OMs leveraging a grid search on the performance of the
available models as shown in Algorithm 1. The CU takes
the dataset and splits it into datasettrain and datasettest.
The CMs of the CU are trained on the datasettrain, and
the datasettest is used for determining the performance of
the models. Before measuring the performance of the CMs,

the hyperparameters of the models are tuned optimally, using
the OMs of the OU. The true positive rate (TPR) and true
negative rate (TNR) are passed to the performanceMetric
function based on the prediction performance of the optimized
model on datasettest. The performanceMetric function
returns the appropriate performance measure depending on the
properties of the input dataset (e.g., accuracy or area under
the curve metrics are good for the balanced datasets, while
for imbalanced datasets, the F1-Score is the most appropriate
metric).
B. Anomaly Detection Unit (ADU)

The ADU takes a dataset, datasetanomaly, which is gener-
ated by adversarial manipulation on the dataset. The overall
datasetanomaly is solely used for testing the ADMs perfor-
mance. As the datasetanomaly contains only the anomalous
data, all the data samples of this dataset are labeled as
an anomaly (-1). However, the ADMs are trained on the
datasettrain only. The performance of ADMs is measured by
correctly identifying the benign and anomalous samples from
the datasetbenign and datasetanomaly. The datasetbenign is
a slightly modified dataset from the datasettest with altered
labels (+1) denoting all benign samples. The hyperparame-
ters of the ADMs are optimized with OU for obtaining the
performing model prior to assessing the performance of the
models. The performanceMetric function takes the true
benign rate (TBR) and true anomaly rate (TAR) based on the
prediction performance of the optimized model and returns the
appropriate performance measure depending on the properties
of the datasets.
C. Optimization Unit (OU)

The OU unit is responsible for optimizing the hyperparame-
ters of all ADMs and CMs. The optimization task is a sequence
of exploration and exploitation processes aiming to optimize
the hyperparameters based on a fitness function.
Exploration: Exploration refers to a scheme of gathering
information about the solution space. It enforces the stochastic
behavior to enable dynamic searching of the optimal hyper-
parameter and avoid being trapped into the local optima. All
of our chosen BAs include a specific technique for simulating
the exploration behavior. The generic exploration behavior of
the BIOCAD framework can be expressed as follows:

ExplorationBIOCAD
i =


f(~Kgrw, ~Cgrw), if i = GWO

f( ~Awh, ~Dwh), if i =WO

f(αff ), if i = FO

Exploitation: Exploitation refers to the technique of iden-
tifying and utilizing the accumulated information from the
exploration behavior. It enforces to converge toward best-
observed solutions. The generic exploitation behavior of the
BIOCAD framework can be expressed as follows:

ExploitationBIOCAD
i =


f( ~−k), if i = GWO

f( ~D′
wl
, ebl), if i =WO

f(βff ), if i = FO
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Fitness function: The choice of the fitness function is the most
crucial part of bio-inspired computing-based optimization. The
fitness function

1) Fitness function for CMs: The fitness function of the
CMs is the deviation between the predicted and actual labels
on the datasettrain as denoted by the loss function by the
Algorithm 1. As long as the datasettrain is trained on enough
data to capture the data pattern, the loss function is sufficient
to find optimal hyper-parameters for the CMs.

2) Fitness function for ADMs: The fitness function choos-
ing for the ADMs is more challenging as it includes only
datasettrain with no anomalous samples. Like the CMs, OU
uses the loss function as the fitness function. But using only
the loss function for the fitness function is not sufficient for
all the ADMs. Because in most of the cases, the hyperpa-
rameters comes up with flexible boundary around the benign
samples of the datasettrain. However, the flexible boundary
performs poorly on the anomalous data samples. Hence, a
tightnessFunction is introduced for choosing the fitness
function of the ADMs. In the case of OCSVM ADM, we
use the sum of the distance of the support vectors from the
boundary as the tightnessFunction, which overcomes the
problem of poor performance on the anomalous samples. For
the DBSCAN algorithm, the tightness is ensured by further
minimizing the radius of the clusters, eps.

VI. EXPERIMENTS AND RESULTS

This section provides the experimentation to analyze the
performance of three state-of-the-art bio-inspired optimization
algorithms for medical data CMs and ADMs.

A. Dataset Description

We experiment with three datasets- the Pima Indians di-
abetes dataset, the Parkinson dataset, and the University of
Queensland vital signs (UQVS) dataset for analyzing the
performance of the proposed BIOCAD framework. The Pima
Indians dataset contains several medical predictor variables
(patients’ age, insulin level, BMI, number of pregnancies, etc.)
and one target variable (diabetes status). The Parkinson dataset
is composed of a range of biomedical voice measurements
from 31 people, 23 with Parkinson’s disease (PD). The UQVS
dataset records anesthetic patient monitoring data in 32 cases
(3 spinal anesthetics, 25 general anesthetics, 4 sedations)
ranging in duration from 13 minutes to 5 hours (median 105
minutes), and we have experimented with a portion of the
massive dataset.

In addition, we generate three more datasets from the
available dataset for mimicking attack scenarios. For this
experimentation purpose, the attack datasets are generated
from a slightly deviated data distribution from the normal
datasets with the intent to evaluate the OCSVM-based ADMs’
performance.

B. Preprocessing

The datasets are split into 75%-25% train-test split before
model training, although the attack datasets are solely used

Algorithm 1: Hyperparameter Optimization
Function GridSearch(Models, Optimizers):

bestModel ← Null;
bestOptimizer ← Null;
bestHypParam ← Null;
bestPerformance ← 0;
for each model ∈ Models do

for each optimizer ∈ Optimizers do
hypParams ← Optimization(model,
optimizer)

modelPerformance ← Performance(model,
hypParams)

if modelPerformance > bestPerformance
then

bestModel ← model;
bestOptimizer ← optimizer;
bestHypParam ← hyperParams;
bestPerformance ←
modelPerformance;

end
end

end
return bestModel, bestHypParam, bestPerformance;

Function Optimization(model, optimizer):

minimize
hp

fitnessFunction(model, hp)

subject to ∀i∈|hpmodel|

lb(hpmodel
i ) <= hpmodel

i <= ub(hpmodel
i )

return hp;

Function Performance(model, hypParams):
mp ← Null;
if type(model) == ‘classification’ then

mp = performanceMetric(TPR,TNR, datasettest);
end
if type(model) == ‘anomaly detection’ then

datasetbenign = createDS(datasettest, labelB);
mp = performanceMetric(TAR,TBR,

(datasetbenign ∪ datasetanomaly));
end

return mp;

Function fitnessFunction(model, hypParams):
fitness ← Null;
ds ← datasettrain;
if type(model) == ‘classification’ then

fitness = loss(model, hypParams, ds);
end
if type(model) == ‘anomaly detection’ then

fitness = loss(model, hypParams, ds) +
tightnessFactor(model, hypParams, ds);

end
return fitness;

for testing purposes. The datasets are further preprocessed
by truncating the records with a missing value. For feature
selection, the correlation between features is used to remove
unnecessary features from the datasets. After removing un-
necessary samples and features, the UQVS dataset contains
3000 samples with 25 features, while the Pima Indians Dia-
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Fig. 3. Scalability of the GWO, WO and FO algorithms in optimizing the hyperparameters of SVM and OCSVM on (a) Pima-Indians-Diabetes-Database,
(b) Parkinson-Database, and (c) UQVS-Dataset.

TABLE I
CONVERGENCE COMPARISON OF VARIOUS OPTIMIZATION ALGORITHMS

FOR SVM AND OCSVM HYPERPARAMETER OPTIMIZATION.

Dataset
Machine
Learning

Algorithm

Optimization
Algorithm

Convergence
Epochs

UQVS

SVM
GWO 13
WO 19
FO 25

OCSVM
GWO 41
WO 69
FO 71

Parkinson

SVM
GWO 5
WO 7
FO 8

OCSVM
GWO 13
WO 15
FO 19

Pima
Indians

Diabetes

SVM
GWO 9
WO 16
FO 14

OCSVM
GWO 24
WO 31
FO 37

betes dataset comprises 795 samples with 8 features, and the
Parkinson dataset has got 300 samples with 22 features.

C. Performance Analysis

The performance of the three optimization algorithms of
the BIOCAD framework is evaluated based on 4 performance
metrics- accuracy, precision, recall, and F1-score. Table II
shows the performance of the hyperparameter optimization
algorithms on the CMs, while Table III demonstrates the
performance comparison for the ADMs.

1) Performance Analysis of BIOCAD framework for the
CMs: From Table II, it is evident that on the Pima Indians
Diabetes and the UQVS datasets, all three OMs perform
reasonably well on SVM and NN-based CMs (except for
GWO on Pima Indians dataset for SVM-based CM) in terms
of all 4 considered performance metric. However, none of
the models demonstrate good performance on the Parkinson
dataset. The high false-negative rate is mainly responsible
for this performance degradation, as indicated by the low
recall value. Increasing the number of agents and number of
iterations didn’t help them to prevent getting trapped into local

optima. All of the models perform significantly well for false-
positive cases, which is proven by the perfect precision scores.
As the datasets are imbalanced, the F1-score is the best metric
for comparing the performance. Based on the performance
analysis of both SVM and NN models, it seems that WO
outperforms the GWO and FO in most cases.

2) Performance Analysis of BIOCAD framework for the
Anomaly Detection Model: The ADM’s performance is eval-
uated on both benign and anomalous data. Although correctly
identifying the anomalies is the primary task of ADM, it
is not desirable to experience a lot of false alarms. From
Table III, it can be observed that on the Parkinson and the
UQVS datasets, all three OMs perform significantly well
on both ADMs (OCSVM and DBSCAN) in terms of all 4
considered performance metric. However, none of the OMs
demonstrate good performance on the Pima Indians Diabetes
dataset. The high false benign rate is mainly responsible
for this performance degradation, as indicated by the low
recall value. Like CMs, in the case of ADMs, WO slightly
outperform the other considered models.

D. Convergence

Table I shows the comparison between convergence per-
formance of the optimization algorithms of the BIOCAD
frameworks for SVM-based CM and OCSVM-based ADM.
The results indicate that the GWO shows the best performance
in the case of convergence speed. But performance analysis
has shown that GWO performs the worst, which suggests
that the GWO optimization algorithm is being trapped in the
local optima faster than the WO and FO algorithms. The
convergence speed of WO is faster than the FO and not
too much slower than the GWO algorithm. Hence, based on
the performance analysis and the convergence speed, WO
seems to be the better choice for both SVM and OCSVM
hyperparameter optimization.

E. Scalability

Fig. 3 shows the execution time comparison for the opti-
mization algorithms in different settings for the SVM-based
CM and OCSVM-based ADM model. The Figure indicates
that although the sizes of the datasets are considerably dif-
ferent in size, for instance, the UQVS dataset is almost ten
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TABLE II
PERFORMANCE COMPARISON OF VARIOUS OPTIMIZATION ALGORITHMS FOR HYPERPARAMETER OPTIMIZATION OF CMS.

Classification
Model Dataset Optimization

Algorithm
γ (SVM)/

Neurons (NN)
C (SVM)/

Layers (NN) Accuracy Precision Recall F1-Score

SVM

UQVS
GWO 0.003 0.002 0.995 1.0 0.995 0.997
WO 0.44 0.59 0.988 0.998 0.988 0.9924
FO 0.18 0.12 0.973 1.0 0.973 0.984

Parkinson
GWO 0.63 0.02 0.74 1.0 0.72 0.84
WO 0.3 0.77 0.775 1.0 0.775 0.873
FO 0.28 0.22 0.775 1.0 0.775 0.873

pima
Indians
Diabetes

GWO 1.05 2.1 0.71 1.0 0.69 0.82
WO 0.28 0.94 0.892 1.0 0.832 0.91
FO 0.247 0.41 0.82 1.0 0.79 0.88

NN

UQVS
GWO 4 8 0.779 0.829 0.779 0.795
WO 6 12 0.88 0.89 0.88 0.885
FO 6 10 0.82 0.85 0.87 0.86

Parkinson
GWO 6 8 0.79 1.0 0.786 0.88
WO 4 7 0.825 1.0 0.812 0.895
FO 8 12 0.741 0.98 0.735 0.84

pima
Indians
Diabetes

GWO 5 9 0.81 1.0 0.81 0.895
WO 3 8 0.842 1.0 0.828 0.906
FO 8 11 0.808 1.0 0.796 0.886

TABLE III
PERFORMANCE COMPARISON OF VARIOUS OPTIMIZATION ALGORITHMS FOR HYPERPARAMETER OPTIMIZATION OF ADMS.

Anomaly
Detection

Model
Dataset Optimization

Algorithm
γ (OCSVM)/
ε (DBSCAN)

ν (OCSVM)/
minPts

(DBSCAN)
TAR TBR FAR FBR Accuracy Precision Recall F1-Score

GWO 0.26 0.1 0.71 0.88 0.11 0.289 0.81 0.94 0.81 0.87
WO 0.04 0.1 0.826 0.94 0.06 0.174 0.85 0.98 0.83 0.89UQVS
FO 0.034 0.23 0.79 0.91 0.09 0.21 0.85 0.89 0.79 0.84

GWO 0.014 0.4 0.87 0.92 0.08 0.133 0.77 0.79 0.87 0.828
WO 0.5 0.69 0.938 1.0 0 0.062 0.95 1.0 0.938 0.968Parkinson
FO 0.62 0.52 0.93 1.0 0 0.07 0.95 1.0 0.93 0.965

GWO 0.6 0.128 1.0 0.875 0.124 0 0.79 0.75 1.0 0.857
WO 0.38 0.13 1.0 1.0 0 0 1.0 1.0 1.0 1.0

OCSVM

Pima
Indians
Diabetes FO 0.42 0.28 0.932 1.0 0 0.68 0.966 1.0 0.932 0.964

GWO 54.7 3 0.76 1.0 0.0 0.24 0.812 1.0 0.787 0.862
WO 68 2 0.797 1.0 0.0 0.203 0.831 1.0 0.797 0.887UQVS
FO 156 6 0.758 0.994 0.006 0.242 0.797 0.998 0.758 0.862

GWO 25.8 5 0.825 0.867 0.133 0.174 0.8125 1.0 0.8125 0.896
WO 191 3 0.949 1.0 0.0 0.051 0.957 1.0 0.949 0.974Parkinson
FO 185 5 0.938 1.0 0.0 0.062 0.949 1.0 0.938 0.968

GWO 34.63 2 0.941 1.0 0.0 0.058 0.936 1.0 0.91 0.953
WO 134 7 0.949 1.0 0.0 0.051 0.957 1.0 0.949 0.974

DBSCAN

Pima
Indians
Dabetes FO 190 10 0.934 1.0 0.0 0.066 0.945 1.0 0.934 0.966

times larger than the others, the execution time varies almost
linearly. Again, it is also clear from the figures that the CM
takes a lot less time compared to the ADM. Hence, it can
be argued that the optimization algorithms are scalable and
feasible to implement for large-scale systems.

VII. CONCLUSION

In this work, we presented a comprehensive digital health-
care system framework referred to as BIOCAD with both
patient status/disease classification and anomaly detection ca-
pability. The framework uses ML-based models for accom-
plishing the classification and anomaly detection tasks. Addi-
tionally, the ML model hyper-parameters are tuned with bio-
inspired computing-based optimization algorithms. Our frame-
work is assessed based on the SVM and NN-based CMs and
OCSVM and DBSCAN-based ADMs. We found promising
performance for the WO algorithm in the SDHS application.
We experimented with three state-of-the-art datasets and got a
0.89-1.0 F1-Score for the WO algorithm. The experimentation
also demonstrates that the proposed framework is scalable

for both classification and anomaly detection tasks. Moreover,
the proposed framework shows significantly high performance
in reducing the false alarm rate of the ADMs. However,
it might be argued that the anomaly detection rates of the
optimized models are not showing perfect performance, which
might be alarming for a safety-critical system like medical
data anomaly detection. Therefore, in the future, we will
evaluate the proposed framework on more promising CMs,
ADMs, and OMs to obtain an ameliorated model. Moreover,
the proposed framework assumes that the underlying datasets
contain sufficient data to capture the data patterns, which might
not be valid for the emerging domains. Hence we will use
the generative adversarial network-based data augmentation
technique.
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