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Abstract—Contemporary smart healthcare systems (SHSs) fre-
quently use wireless body sensor devices (WBSDs) for vital sign
monitoring and the internet of medical things (Io0MT) network
for rapid communication with a cloud-based controller. The
SHS controllers generate required control decisions based on the
patient status to enable real-time patient medication/treatment.
Hence, the correct medical delivery primarily depends on accu-
rately identifying the patient’s status. Accordingly, SHSs mostly
leverage deep neural network (DNN)-based machine learning
(ML) models for patient status classification due to their predic-
tion accuracy and complex relation capturing capability. Never-
theless, the open IoMT network is prone to several cyberattacks,
including adversarial ML-based attacks, which can exploit DNN
models and create a life-threatening event in a safety-critical
SHS. Existing solutions usually propose outlier detection or
transfer learning-based ML models on top of the patient status
classification model to deal with SHS security issues. However,
incorporating a separate anomaly detection model increases
the model complexity and raises feasibility issues for real-time
deployment. This work presents a novel framework, DeepCAD,
that considers training a stand-alone DNN model integrated with
anomaly detection rules for classification and anomaly detection
in SHS. The proposed framework is verified on the Pima Indians
Diabetes and Parkinson datasets.

Index Terms—Healthcare security, machine learning, internet
of medical things, patient status classification, anomaly detection

I. INTRODUCTION

A smart healthcare system (SHS) is a part of a broad multi-
disciplinary concept, the digital healthcare system (DHS) [1].
The SHS concept is reshaping the modern healthcare system
by making it more personalized, automated, and effective by
incorporating the internet of medical things (IoMT)-enabled
network and machine learning-based control decision system.
Patients are automatically treated with implantable medical
devices (IMDs) or another automated medical delivery system
in a typical SHS. The medical actuators (i.e., IMDs or so)
are triggered by a control signal, which is primarily provided
by a cloud-based controller. The controllers use an ML-based
algorithm to determine the patient’s status through the sensor
measurements collected from the wireless body sensor devices
(WBSDs) connected to the patients’ body. The measurements
from WBSDs are sent to the controller through the IoMT
network. The importance of SHS was more clear during the

COVID-19 pandemic period. A large number of people got
delayed or denied healthcare services during this pandemic
period since there was a sharp difference between hospital
accommodation and affected patients [2]. The avoidance or
delay in medical care significantly contributed to the surge
of patients’ death due to COVID-19 [3]. Almost 48% of
COVID-affected Americans were either delayed or denied
medical treatment during the pandemic period [4]. 11% of the
patients experienced deteriorated health conditions because of
treatment latency. Global acceptance of automated SHS would
have reduced such unexpected events by enabling remote
patient monitoring and treatment using ML-based controllers.
The prevalence of sufficient healthcare data supported by the
statistics stating the availability of more than 2,000 exabytes of
data related to healthcare is making the patient status classifi-
cation ML models more reliable [S]. The deep neural network
(DNN) models are particularly getting popular due to their
intricate pattern identification, nonlinear boundary acquisition,
and inter-feature relationship capturing capability [6], [7].
However, the DNN model, being trained on only benign
samples, classifies each and every possible sample as the
learned classes. Hence, sensor measurement manipulation
through knowledgeable adversarial attempts can misinform
the controller with wrong information, leading to inaccurate
patient status identification and thus wrong medication/ treat-
ment. Therefore, the incorporation of ML models, despite
capturing critical relationships among sensor measurements,
is susceptible to several threats to be exploited by various
stealthy cyberattacks [8], [9]. The open [oMT network commu-
nication is growingly increasing the possible cyberattacks in a
safety-critical SHS [10]. The feasibility of exploiting health-
care sensor devices is revealed by a recent study, dictating that
more than two-thirds of [oMT devices are vulnerable to several
cyberattacks [11]. The SHS is exploitable with many attacks,
as found in recent literature. The attacks include hardware
Trojan [12], man-in-the-middle (MITM) attacks [13], malware
(e.g., Medjack [14]), Sybil attacks (using either hijacked
IoMT [15], denial of service attack [16] and so on. More
than half of the healthcare organizations have been affected by
adversarial attacks from October 2018 to October 2019 [17]. A
report states that the University of Vermont Medical Center got



isolated from network connection due to a cyberattack, which
is estimated to incur $64 million loss [18]. The vulnerability
of JToMT-enabled SHS has also been identified by the statistics
determining 6.2 (out of 10) cybersecurity vulnerabilities in 15-
20 connected IoMT devices [19].

Adversarial ML-based attacks have become a severe con-
cern for safety-critical systems. A knowledgeable adversary
having information about the SHS ML model can launch
Whitebox or BlackBox adversarial ML-based attacks. Ad-
versarial ML-based attacks find the vulnerability of the ML
models and can reveal attack paths to launch targeted or
untargeted attacks with minimal alteration [20]-[24]. However,
several solutions have been proposed to detect adversarial al-
teration in ML-based systems. The proposed solutions mostly
adopt transfer learning, ensembled ML, and outlier detection
techniques [25]-[27]. However, these techniques increase the
model complexity and thus face control decision generation
latency. In a safety-critical system like SHS, a minor delay can
cost patients life. Hence, in this work, we attempted to develop
a single DNN-based framework naming Deep neural network-
based Classification and Anomaly Detection (DeepCAD). The
proposed framework performs both classification and anomaly
detection by adding anomaly detection rules into a DNN
model. The rule addition in a complex DNN model is not
straightforward. We have developed a novel DNN model
training approach with a modified loss function to determine
out-of-date distribution samples accurately. The work is a
proof of concept and is implemented to add circular boundaries
to the two-feature classification model. We have verified
the proposed framework on a state-of-the-art dataset - Pima
Indians Diabetes dataset [28]. The summarized contributions
are presented followingly:

o We developed a DNN-based framework that can perform
both classification tasks with anomaly detection without
being trained with the anomalous sample. The proposed
framework does not require a separate model for anomaly
detection.

e The robustness of the DNN model of the DeepCAD
framework is analyzed against adversarial ML models.
Moreover, We have verified our framework on a real
dataset.

The rest of the paper is organized as follows: we present
the overview of an SHS and other necessary background
information for the reader’s comprehension in Section III. In
Section II, we present a comprehensive overview and differ-
ences from the existing literature. The DeepCAD framework
overview can be found in Section IV, and a detailed technical
aspect of the framework is explained in Section V. Moreover,
we evaluate our proposed framework by running experiments
on a synthetic dataset and a real dataset and present the
results in Section VI. Section II provides a literature review to
show differences with the existing state-of-the-art techniques.
Finally, Section VII provides conclusion and future extension.

II. RELATED WORKS

Anomaly and patient status classification models of safety-
critical systems like SHS are drawing significant research
focus nowadays. The classification models for SHS are mainly
using supervised ML models. The DNN-based classification
models are particularly being used for their complex nonlin-
ear boundary extraction capability [29]-[31]. However, these
DNN models are mostly trained with benign samples. A few
works consider anomalous samples to train the DNN model.
However, it is almost impossible to capture the anomalous
sample distribution from a set of anomalous samples due to
the increasingly growing attacks. Hence outlier and transfer
learning-based anomaly detection techniques are increasing
in popularity [25]-[27]. One of the mention-able works is
presented by Haque et al. [25], where they have proposed
ensembled unsupervised ML models with an autoencoder
and one-class support vector machine to perform abnormality
detection. In another work, they have proposed two separate
ML models for classification and anomaly detection [26].
They proposed a novel fitness function calculation for anomaly
detection using bio-inspired computing-based hyper-parameter
optimization in that work. However, all these models demon-
strate significant complexity and in a critical safety system
like SHS, minor latency can cost patients lives. Similarly, the
transfer learning-based trained model also comes up with a
complex model. Hence, a single model embedding the rules
of classification and anomaly detection is direly needed to
reduce the decision-making latency in the SHS controller end.

Several types of research have been conducted for develop-
ing anomaly detection models for the healthcare system. Al-
rashdi et al. developed an ensembled online sequential extreme
learning machine (EOS-ELM) for identifying abnormalities
and malicious activities in fog-based internet of things (IoT)-
enabled healthcare system [32], [33]. Newaz et al. presented a
novel ML security framework for detecting adversarial attacks
in an SHS that attempts to craft the observed vital signs
collected from the connected IoMT devices and thus endanger
the patient’s health condition [34]. Al Shorman et al. employed
one-class SVM (OCSVM) to provide a new mechanism for
identifying IoT botnet attacks, using grey wolf optimization
(GWO) to optimize the underlying hyperparameters. [35],
[36]. In transfer learning, the knowledge of an already trained
machine learning model is applied to a different but re-
lated problem. Zhao et al. performed transfer learning-based
anomaly detection in networks motivated by the fact that “most
network attacks belong to variants of known network attack
families and share common features, which suggests a good
fit for applying transfer learning” [27], [37].

The embedding of classification and anomaly detection rules
in a single model is needed to reduce treatment latency. There
exist several research attempts to embed rules in the ML
model [38]-[40]. The attempts made by Ganchev et al. [39]
and Hu et al. [40] mainly use a regularization process to
embed rules into ML models. The regularization process can
control the DNN provided boundary. However, they cannot



be applied to impose any rules on the DNN model. Moreover,
Seo et al. came up with a state-of-the-art DNN rule embedding
framework, DeepCTRL, in which the robustness of rules can
be controlled in the inference phase [38]. The imposed rules
in the DeepCTRL model follow a specific format. Hence,
to the best of our knowledge, no existing work can directly
add anomaly detection rules to the DNN-based classification
model.

III. PRELIMINARIES

In this section, we discuss SHS, DNN, minimum enclosing
circle, adversarial machine learning, and threat model to ease
following the rest of the paper.

A. IoMT-enabled Smart Healthcare System (SHS)

The connected smart medical device network of SHS is
popularly identified as the IoMT network. Due to the ad-
vancement of the medical domain through cost reduction and
consultation accuracy, loMT-enabled SHS is regarded as a
game-changer for the medical field. The research community
is getting benefited from carrying out statistical analyses of
diseases and medication patterns due to the prevalence of
an enormous amount of medical data. The engagement of
IoMT in the healthcare domain enabled increasing interest
in developing universal data acquisition solutions to obtain
and analyze data from decentralized sources [41], [42]. In
a typical IoMT network, sensor measurements are sent to
a cloud server for control decision-making since the sensor
devices and IMDs are incapable of processing a large amount
of data. Moreover, local decision control would raise several
security and implementation issues. In this work, we consider
an IoMT-enabled SHS that uses WBSN, ML-based patient
status classification model, and IMD-based actuators. Figure 1
shows a sample loMT-enabled SHS, where a patient diagnosed
with both COVID-19 and diabetes is being monitored through
WBSDs (e.g., blood glucose, cholesterol, pulse oximeter)
is being provided with automatic medical delivery through
ventilator and insulin pump.

The WBSDs attached to the patient body uninterruptedly
monitor the patient vital signs. These observed measurement/s
from the sensor devices are delivered to the ML-based cloud
controller using various wireless communication protocols
(e.g., WiFi, Bluetooth, Zigbee, and so on). The controller takes
decisions based on the reported/received sensor measurements
and sends control commands to the IMDs to deliver the nec-
essary treatment to the patients. For instance, in the provided
example (Figure 1), if the controller figures out that the patient
needs emergency insulin delivery or immediate ventilation,
it notifies the responsible insulin pump implanted inside the
patient’s body or ventilator to inject the proper amount of
insulin or oxygen.

B. Cyber Attacks in SHSs

The SHSs are exploited with various malware and man-
in-the-middle (MITM) attacks. Medical Device Hijacking
(MEDIJACK) is a recent malware threat that targets healthcare
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Fig. 1. An IoMT-based SHS for COVID and diabetes patient treatment.

systems by injecting malware into IoMT networks. [14]. Itis a
stealthy cyber-attack that employs the concept of polymorphic
malware to continuously increase its capacity, making it ex-
tremely difficult to detect. MEDJACK achieves network access
without being noticed by the system administrator by building
a backdoor behind the firewall. On the other hand, MITM
is a cyber-attack in which an adversary gains unauthorized
access to a communication between two authorized parties
and eavesdrops on or corrupts the data being transmitted.
In sensor networks, Bluetooth-enabled medical devices have
potential vulnerabilities, which is affirmed by Pournaghshband
et al. [13] since they demonstrate the feasibility of launching
a MITM attack in a Bluetooth-enabled pulse oximeter. They
reverse-engineered a Nonin Onyx II 9550 fingertip pulse
oximeter, which can measure blood oxygen saturation and
pulse rate. MITM attacks on wireless networks can be carried
out in various ways, such as by disrupting Bluetooth pairing
with devices or access points (APs).

C. Deep Neural Network (DNN)

DNN model is the most popular supervised ML model. The
difference between the DNN model and the regular neural
model is that in a DNN model, multiple hidden layers exist
between input and output layers. The DNN model is developed
inspired by the working principle of the human brain, which
is capable of doing numerous tasks in a parallel fashion
without degrading system performance [43]. The key feature
of the DNN model is its intricate pattern identification ability
from high-dimensional data representation. The best use of
DNN can be observed in a multiclass classification problem.
However, in this work, for simplicity, we consider a binary
classification problem to be solved by DNN. The DNN model
training demands a lot of tuning, such as learning rate, batch
size, number of hidden layers, etc. Our proposed DeepCAD
framework leverages a feed-forward DNN that optimizes the
considered loss function using an adam optimizer [44].

In a DNN, a set of nodes are arranged in a network in a
particular manner depending on the application domain. The
network comprises several layers, from the input to the output
layer, and quite a few hidden layers in between. The DNN



model performance mainly depends on the number of hidden
layers and associated nodes. For every node of different layers
of the DNN model, the input is produced by the sum of
products of weight and output of the previous nodes added
with the bias work. The output of each node is passed through
an activation function (i.e., ReLU, tanh, etc.) to obtain a
non-linear boundary from the DNN model. These activation
functions play a crucial role in non-linearly mapping between
the input features and target. Initially, the weights and biases
are assigned randomly. Later, these model parameters are
tuned to reduce the error between the model prediction and
target through the backpropagation process. Learning rate is
another DNN model hyperparameter that controls the model
parameters’ magnitude in response to the estimated error.
Moreover, the DNN model utilizes a regularization process
to deal with the over-fitting issues.

In this section, we provide the formal definition of the DNN
model for better understanding. The input of each node at any
layer except the input layer is calculated using Equation 1.
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Here,
N denotes the number of layers of the DNN model.
Nimput gionifies the input to n-th node of m-th layer from a
set of all node, N,
Wnm.on indicates the weight of the interconnecting node n
(from m-th layer) and o (from (m-1)-th layer),
B, is the bias at mth layer.

Since there in no node prior to input layer, the input and
output of the input layer is same as input sensor measurements
as shown in Equation 2.

Nl'mput — Nloutput — S (2)

Here,
S is the set of input sensor measurements.

D. Minimum Enclosing Circle (MEC)

We consider the smallest possible circle, which covers the
minimum possible area, as our anomaly detection boundary.
The idea is to enclose the data distribution with a minimal
circular boundary so that the samples coming out of the bound-
ary are labeled as an anomaly. The boundary is known as the
minimum enclosing circle (MEC). An English mathematician
James Joseph Sylvester was the first to propose the problem.
The problem can be considered a generic problem in n-
dimensional space to enclose high-dimensional features using
n-sphere. Welzi’s algorithm is one of the efficient recursive
approaches to solve the MEC problem, using which the MEC
is attainable in O(N). The aforementioned observations are the
base for Welzi’s algorithm. The key idea is to stochastically
choose a point to be removed from the input dataset to form
a circle equation. After forming the equation, it is checked

whether the removed point is bounded by the equation or not.
On failure, it is depicted that the point in interest must lie in the
MEC boundary. Hence, this point is regarded as a boundary
point, and the function is recursively called repeatedly.

E. Adversarial Machine Learning

Adversarial machine learning is an ML technique that
tries to exploit models by utilizing publicly available model
information to create malicious attacks using deceptive inputs
to the ML model. This is considered to be the most typical
reason for causing an ML model to malfunction. Adversarial
ML attacks can be of two kinds - BlackBox and white-box
attacks.

Adversarial Example The principal objective of the adversar-
ial ML attack is to generate adversarial examples. Therefore,
an adversarial example is an input to an ML model that is
deliberately devised to cause an ML model, particularly DNN,
to provide wrong predictions. The alteration is that adversarial
samples are imperceptible to a human.

Adversarial Goals In an adversarial ML attack, an adversary’s
primary goal is to create adversarial sample creation. The
adversarial goals can be categorized into three categories based
on the impact on the classifier output integrity - targeted attack
(i.e., adversarial sample prediction should be a specific label),
untargeted attack (i.e., adversarial sample prediction can be
any label other than the actual label), targeted device attack
(i.e., the adversary tries to devise the minimum number of
devices to compromise for attaining attack goal). Since the
considered dataset has only two classes in this work, we
consider the attack goal to launch an untargeted attack.
Adversarial Capabilities In order to perform the adversarial
attack on the ML model, the following capabilities are con-
sidered for the adversary:

o Data Distribution: Since different smart WBSDs produce
different types/ranges of data, an attacker may only have
a partial understanding of the devices’ data distribution.
The attacker may adjust a data value within a specific
threshold based on this to alter a disease-affected patient’s
status to a normal one, which will interrupt medication/
treatment.

e SHS Architecture: To carry out an attack, an adversary
may have total or partial knowledge about the SHS
architecture, including the number of devices, device
correlation, and so on.

e Output Label: To launch an attack, an adversary may
have knowledge of the DNN model’s output labels (e.g.,
disease statuses and normal status).

e ML Model: The ML model (in our case, the DNN model)
and corresponding architecture is known to the attacker.

The adversarial ML-based attack can be broadly classified

into two groups - evasion and poisoning attack. We consider
a state-of-the-art adversarial ML technique, naming the fast
gradient sign method (FGSM) attack for this work.

Fast Gradient Method (FGM) Attack: To find adversarial
examples, the fast gradient approach employs the gradient of
the underlying model [45]. With the goal of changing the



behavior of the learning model, the original input is altered
by adding or deleting a minor error in the gradient direction.
In our model, an attacker’s capability (threshold) was added as
a minor error in the gradient direction to temper the model’s
classification.

An intuitive demonstration of the FGSM attack is provided
in Figure ?? where with minor alteration, a Macaw is mis-
classified as a Bookcase.

IV. FRAMEWORK

In this section, we present an overview of the proposed
framework. The workflow of the framework is shown in Fig. 2.
A synthetic dataset is prepared for an intuitive understanding
of the workflow. The dataset contains two classes of samples-
positive and negative. The samples from the positive class
are colored green, and the negative class samples are colored
red. The principal task is to classify the positive and negative
samples correctly. It is clear from the figure that the samples
are separable with a simple boundary, and a regular DNN
model can accurately perform the classification task. However,
since the model will be trained on two classes of samples, the
trained DNN model will classify any data points into those
classes, irrespective of their belonging to the data distribution.
Our proposed framework solves the problem by classifying
out-of-distribution samples as anomalies. We consider the
data is distributed in a minimal circular boundary, and our
framework attempts to impose that boundary constraint in the
trained DNN model. The framework workflow is divided into
two steps described as follows.

Data Processing The framework, at first, takes the prepos-
sessed data as input. All data are then passed to Welzi’s
algorithm to obtain a minimal circle that can enclose all the
data points (i.e., a circle with the least possible area that can
bound all data points). Initially, the framework encodes the
label of the positive sample as (1, 0) and negative samples as
(0, 1). However, the labels are scaled and normalized after the
boundary acquisition according to the circle center/ boundary
distance. From the Fig. 2, we can see that after scaling and
normalization, the positive samples close to the boundary are
labeled close to (0.5, 0), whereas the negative samples are
labeled close to (0, 0.5). Similarly, the positive samples near
the circle center will be labeled closed to (1, 0), and the
negative samples will be labeled close to (0, 1). The points in
between will be labeled accordingly as ([0.5-1], 0) and (O, [0.5-
1]) for positive and negative samples, respectively. The scaling
and normalization process is further explained in Section V.

Model Training As discussed in the data processing step,
instead of labeling the positive and negative samples with a
single label, the labels are encoded into two labels. Although
the problem is a classification problem, the DNN model of our
framework views the problem as a regression problem. The
DNN model takes the preprocessed data as its input. There
are 2 input features and 2 output labels for the DNN model.
The number of layers and the number of hidden layer nodes
are later tuned for optimal model acquisition. From the figure,
we can see that after initial passing (without training), the

model misclassified almost each and every sample. The DNN
model is trained for several epochs, and the weights of the
DNN model are tuned in each epoch based on loss calculation.
We consider the mean square error loss function in our case
to determine the mean difference between the actual and
predicted samples. The loss calculation is also supplemented
by calculating errors between out-of-boundary verification
samples with their model prediction (i.e., verification loss
function). The later loss function is passed through a ReLU
activation function. The framework, in the end, outcomes
the model that has converged (i.e., the training samples are
accurately predicted) or reached a pre-specified threshold. The
ultimate goal of the model is to label them out of circle
samples as ([0 - 0.5), [0 - 0.5)) so that after rounding, the
labels are converted into (0, 0). The verification loss function
helps embed the rule into the DNN model to predict labels for
the out-of-boundary samples to be fewer than 0.5.

V. TECHNICAL DETAILS

In this section, we provide a detailed description of the
DeepCAD framework. The DNN model of the framework
can perform the classification and anomaly detection together.
The algorithm of the overall process is demonstrated in
Algorithm 1. We discuss line by line the explanation of the
algorithm. The overall process can be divided into two steps
which are described as follows.

A. Data Preprocessing

The data is comprised of features and labels. In this work,
we consider only binary classification. Hence, we consider two
classes - positive and negative for the model prediction. The
data preprocessing consists of 3 steps- feature preprocessing,
boundary acquisition, and label preprocessing.

Feature Preprocessing As discussed before, this is a proof
of concept representation, and we consider the input features
are 2-dimensional. Hence, for high dimensional feature space,
we reduce the feature space into 2-dimension using principal
component analysis or other dimension reduction techniques.
Currently, the framework works for the datasets, where the
features can be reduced into 2-dimension with minimal loss
of information. The framework takes the preprocessed features
as input.

Boundary acquisition We consider that the anomaly detection
rules are encoded by enclosing the data distribution within a
boundary. Our goal is to label a data point residing out of
the boundary as an anomaly. Line 16 of the Algorithm 1 uses
Welzi function to enclose the features in a minimal circle.
The purpose of the Welzi function is to obtain a MEC. The
returned circle is described by the circle’s center and radius,
where (circle, circleY) is the coordinate for the circle center
and circlem s is the circle radius.

Label Prerocessing The label preprocessing is the principal
data preprocessing step. The success of accurate anomaly
detection of DeepCAD depends on label preprocessing. The
label processing is demonstrated in Line 17-19. The initial
labels are encoded as (I, l2). For the positive sample, I; = 1
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Algorithm 1: DNN Model Training with DeepCAD.

1 Function VerificationSampleGeneration (circle,
numVerSamples, threshold) :
thetas <+ GenTheta(0, 2*m, numVerSamples);
verificationSamples < Null;
for i in Range(numVerSamples) do
vSample® « circle® + circle™ ¥ + threshold
* cos(theta;);
6 vSample” < circleY + circle™¥ + threshold
* sin(theta;);
7 verificationSamples.append(vSample™
vSampleY)
end
return verificationSamples;
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Function LossFunction (labels, predictions,
verification Predictions, alpha, verThreshold) :

12 loss < alpha * MSE(labels, predictions) + (1 -

alpha) * mean(ReLU(veri fication Predictions -

verThreshold));
13 return [oss;

15 Function ModelTraining ( features, labels, epochs,
numV erSamples, threshold, alpha, verThreshold,
optimaizer) :

16 circle < Welzi(features);

17 dif f < Distance(features, circle™¥*);
18 scaler < (0.5 + circle™ ™ — dif f);

19 labels < labels * scaler;

20 veri ficationSamples <

VerificationSampleGeneration(circle,
numVerSamples, threshold)

21 for ¢ in Range(epochs) do

22 predictions < Pred(model, features);

23 verificationPredictions < Pred(model,
veri ficationSamples);

24 loss < LossFunction(labels, predictions,
veri fication Predictions, alpha,
verThreshold);

25 Update model parameters using optimizer to
minimize the loss

26 en
27 return model;

and o = 0, while for the negative sample, [; = 0 and I» = 1.
At first, the euclidean distance from each and every feature is
calculated from the circle obtained in the boundary acquisition
step and put in the dif f vector. All values in the dif f vector
is in the range in the range[0 — circle™¥%*]. Line 18 shows
the scaler vector calculation process, which is in the range
in the range[0.5 — 1]. The scaler values for the points that

TABLE I
DECISION MADE BY DEEPCAD DNN MODEL FOR DIFFERENT LABELS.
Label 1 | Label 2 | Decision
0 0 Anomaly
1 0 Positive
0 1 Negative
1 1 Invalid

are closer to the center are close to 1, whereas the scaler
values for the points that are closer to the boundary are close
to 0.5. In line 19, the labels are multiplied by the scaler vector.
Hence, the labels of the positive points at the center turn in
(1, 0), while the negative ones are scaled to (0, 1). The labels
of the positive points on top of the circle circumference turn
in (0.5, 0), while the negative ones are scaled to (0, 0.5). Let’s
look into a case study for the calculation. Say the MEC’s
center is located at (2, 2), and the radius of the circle is 2. A
point located at (1, 0.8) will have a di f f value of 1.56205 for
that particular point, and the scaler value at the index of the
point in consideration will be 0.93795. Now, if the point is
positive, the modified label will be (0.93795, 0), while for the
negative point, the modified label will be (0, 0.93795). The
goal of this approach is that the points outside the boundary
will be labeled as ([0-0.5), [0-0.5)), so that after rounding the
label of the samples will be (0, 0). Table I shows the expected
model outcome for different labels. It is to be noted that the
DeepCAD DNN model should not outcome any label in range
([0.5 -1], [0.5 - 1]) since the rounded prediction will result in
(1, 1), which is neither a positive nor benign sample. This
type of outcome is only possible when the model is not well
trained, which is also a good indicator of convergence.

B. Model Training

The DNN model training of the DeepCAD framework

consists of 4 steps- DNN model configuration, verification
sample generation, loss calculation, and model tuning.
DNN Model Configuration After processing the data, the
DNN models are configured. In the current stage, we consider
two input and two output labels. Based on the non-linearity of
the optimal boundary, we add layers and corresponding nodes
in the layer. The input samples are passed through the model
gets, multiplied with weights, added with biases, and processed
by activation functions. The goal of the model configuration is
to create a DNN model architecture from which the positive,
negative, and anomalous samples can be correctly classified
after proper tuning of weights and bias.
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Verification Sample Generation The proposed Deep-
CAD framework creates several verification samples out-
side the boundary, which helps to label the anomalous
samples correctly. The absence of verification samples in
the model training starts misclassifying anomalous sam-
ples at a certain distance from the boundary. The verifica-
tion sample generation process is shown in Line 2-7. The
veri ficationSampleGeneration function takes the MEC
circle properties (circle), several verification sample to create
(numVerSamples), and the distance from the boundary
to create samples (threshold) as input. We create samples
circularly distributed around the MEC. We generate angles(in
radian) using the GenTheta function around the MEC from
the positive x-axis. Line 4-7 uses the theta angles and the
threshold distance to get the exact position of the verification
samples, and that’s how the verificationSamples vector is
generated. Figure 3 shows the verification samples from the
synthetic dataset for the visualization purpose.

Loss Calculation and Model Tuning The DNN model
parameters (weights and the bias) are tuned based on the
loss function. For obtaining optimal classification and anomaly
detection performance, the loss at each epoch is calculated
using two different loss functions. Line 12 of Algorithm 1
shows the loss calculation process. The loss calculation for
the regular samples and verification samples are a bit dif-
ferent. Before the loss calculation, the prediction from the
model is calculated for both regular and verification sam-
ples through a forward pass and fed into predictions and
veri fication Predictions respectively (Line 22, 23). The loss
calculation for the regular samples uses the mean squared
error in between the prediction and actual label. The loss
calculation for the verification samples uses mean ReLU error.
We know that ReLU is an activation function that takes
negative values as input and outputs zero while taking positive
values as input outputs the same value as input. We can see
from Line 11 that LossFunction is taking verThreshold
as input. The verThreshold is a value less than 0.5, using
which we want to restrict the wverificationPredictions.
The ReLU activation function penalizes the model when
verificationPredictions exceeded verThreshold. There is
another input to the LossFunction naming alpha, which

weights the MSE and ReLU loss functions for loss calcula-
tion. The DNN model tuning is an optimization process that
minimizes the calculated loss over the iteration by updating
the model parameters. An optimization function is used for
this purpose.

VI. EXPERIMENTS AND RESULTS

This section provides the experimentation to show the
analysis of the performance of DeepCAD on a state-of-the-art
healthcare dataset for diabetes prediction. We consider an SHS
that generates the necessary insulin delivery control signal
to actuate an automated insulin pump. The expectation from
the DeepCAD DNN model is to identify the patient’s status
(diabetes o not), which will assist in deciding the need for
insulin delivery. Moreover, if the patient sensor measurements
are somehow manipulated through an adversarial attempt or
fault, the proposed framework will also be able to detect that.

A. Environmental Setup and Dataset Description

We conducted the experimentation on Dell Precision
7920 Tower workstation with Intel Xeon Silver 4110 CPU
@3.0GHz, 32 GB memory, 4 GB NVIDIA Quadro P1000
GPU. The DNN model is trained using the PyTorch li-
brary [46]. As discussed before, the MEC is found using
Welzi’s algorithm.

We experiment with two state-of-the-art datasets- the Pima
Indians diabetes dataset and Parkinson dataset for analyzing
the performance of the proposed DeepCAD framework. The
Pima Indians dataset contains several features that are used
for medical prediction (patients’ age, insulin level, BMI,
number of pregnancies, etc.) and a target variable (i.e., diabetes
status). We encode the target variable into two variables as
described in the Section V. The Pima Indians dataset contains
a number of indistinguishable samples. Hence, some data
samples have been removed. The dataset contains 9 features.
However, we prepossess the dataset by reducing the number of
features using principal component analysis. Figure 4 shows
the feature space of the preprocessed dataset, where there are
444 diabetic patient samples and 145 non-diabetic samples.
On the other hand, the Parkinson dataset is composed of
a range of biomedical voice measurements from 31 people,
23 with Parkinson’s disease (PD). The Parkinson dataset is
preprocessed similar to the Pima Indians dataset processing
and there are 48 parkinson affected patients’ samples and 147
samples for non-parkinson samples after preprocessing. The
preprocessed Parkinson dataset is visualized in Figure 5.

B. Performance Analysis of Classification Task

Here, we assess the performance of the DeepCAD DNN
model for the classification task. The performance has been
measured using 4 metrics - accuracy, precision, recall, and f1-
score and compared with the regular DNN model [47]. The ac-
curacy metric quantifies the correctly predicted samples (both
positive and negative) over all samples. The quantification of
model predicted positive class samples being an actual member
of the positive class sample can be measured using precision
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Fig. 4. Preprocessed Pima Indins dataset. The features with diabetes labels
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Fig. 5. Preprocessed Parkinson dataset. The features with parkinson labels
are shown as green '+ and the no parkinson labels are shown as red ’x’.

metric. The recall metric determines the amount of predicted
positive class samples overall actual positive class samples.
The fl-score is the harmonic mean of precision and recall
metric. Hence, the value of the fl-score is more aligned with
the minimal in between precision and recall metric.

The regular DNN model is trained with the same features.
However, unlike the DeepCAD DNN model, the regular DNN
model has a single label, in which positive samples are
encoded as 1, and negative samples are encoded as 0. Both
models have been trained same similar hyper-parameters (i.e.,
1000 epochs, 6 layers, 50 nodes in each layer). The loss
function of the regular DNN model is calculated using the
binary cross-entropy loss function. The loss function of the
DeepCAD model is explained in Section V. Tables II and III
show the performance comparison between DeepCAD and
regular DNN models. From the metric, it is evident that both
models demonstrate similar performance. The minor degrading
performance of the DeepCAD DNN model can be reasoned
due to the optimization of a more complex loss function
compared to the regular DNN model.

TABLE II
PERFORMANCE COMPARISON IN BETWEEN REGULAR DNN AND
DEEPCAD DNN (PIMA INDIANS DIABETES DATASET).

Per;'/([)rm? nee Accuracy | Precision | Recall | F1-Score

etric

Regular DNN 98.5 98.6 95.8 97.1

DeepCAD DNN | 98.2 98.1 95.2 96.6
TABLE III

PERFORMANCE COMPARISON IN BETWEEN REGULAR DNN AND
DEEPCAD DNN (PARKINSON DATASET).

Performance

Metri Accuracy | Precision | Recall | F1-Score
etric

Regular DNN 95.5 94.9 93.2 94.0
DeepCAD DNN | 95.1 93.8 92.4 93.1
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Fig. 6. Contour plot of Pima Indians Diabetes dataset.
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Fig. 7. Contour plot of Parkinson dataset.

C. Performance Analysis of Anomaly Detection

The DeepCAD DNN model can perform anomaly detection
in addition to classification. Figure 6 shows the contour plot
of the Pima Indians Diabetes dataset. It is evident from the
figure that each and every point out of the MEC is classified
as an anomaly. Moreover, the out-of-distribution points inside
the MEC are also labeled as an anomaly. It can be argued
that the data distributions enclosed by the circle are not
perfectly enclosing the data distribution. In this work, we
have experimented with circular boundaries only. However,
the proposed concept can be used in the case of adding any
boundary around the data distribution. The only difference will
be, instead of scaling the sample prediction equally from the
center to circle circumference, the scaling will be different
based on distance from the boundary for any other regular
or irregular shapes. Figure 7 shows the contour plot of the
Parkinson dataset.
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Fig. 8. Robustness comparison for the DeepCAD DNN model against FGSM
attack (Pima Indians Diabetes Dataset).

D. Robustness analysis of the DeepCAD model

We evaluate the robustness of the DeepCAD DNN model
by assessing the performance of the model against adversarial
ML-based adversarial samples. We use accuracy drop (i.e.,
decrease in accuracy after adversarial ML attack) as the perfor-
mance metric for robustness analysis. The adversarial samples
are generated from regular DNN models with different attacker
capabilities. Figure 8 shows the accuracy drop of the regular
DNN and DeepCAD DNN models for Pima Indians Diabetes
dataset. It can be clearly depicted that the accuracy drop of
the DeepCAD DNN model is significantly less than the regular
DNN model. The regular DNN model classifies samples into
two classes - positive and negative, whereas the DeepCAD
DNN model is also capable of classifying the samples into
anomaly classes. The accuracy drop in the regular DNN model
is due to the fact that with the given adversarial capability,
some samples have been manipulated in a way that they are
misclassified by the model. Almost half of the misclassified
samples are labeled as an anomaly by the DeepCAD DNN
model. However, the other half of adversarial samples have
been misclassified by the DeepCAD DNN model because
although those adversarial samples are being misclassified,
they are still maintaining the data distribution. The more
capability adversary possesses, the more adversarial samples
will be generated to exploit the regular DNN model. However,
most of those samples will be identified as an anomaly by
the DeepCAD DNN model since, with drastic alteration, the
adversarial samples will lose stealthiness by going outside
the boundary. The similar kind of accuracy drop relation is
observed in the case of Parkinson dataset as well as shown in
Figure 9.

VII. CONCLUSION

A novel DNN model training framework, DeepCAD, is
proposed in this work that can perform both classification and
anomaly detection for SHS. Two different ML models were
pipe-lined for these tasks in the traditional solutions. The real-
time samples from the patients were first fed into the anomaly
detection model. The patient status classification came into
the picture only when anomaly detection models identified the
samples as benign. However, the process initiates delay in the
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Fig. 9. Robustness comparison for the DeepCAD DNN model against FGSM
attack (Parkinson Dataset).

decision generation, which in turn can be responsible for the
adverse physical condition of patients. Hence, we propose a
stand-alone ML model for performing both tasks using a single
model, thus reducing decision-making latency. The proposed
framework is verified on a real dataset. The experimental
analysis supports that the DeepCAD DNN model experiences
around 50% less accuracy drop compared to a regular DNN
model. The existing work is proof of concept. We want to
address and solve; we consider a 2-dimensional feature space
for this work since we consider the MEC with a circle using
Welzi’s algorithm. However, since Welzi’s algorithm can draw
a minimum enclosing n-sphere, the same algorithm should
work for n-dimensional feature space. We will verify this
in our future extension. Moreover, we plan to integrate the
boundary of any shape in the extended version. The current
version is tested for binary classification problems. However,
the framework should be working for multi-class classification
problems without alteration, which will be verified in the
upcoming work. Moreover, we are planning to experiment and
extend the framework with other ML algorithms.
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