
Side-Channel-Driven Intrusion Detection System for
Mission Critical Unmanned Aerial Vehicles

Alejandro Almeida∗, Muneeba Asif∗, Md Tauhidur Rahman†, and Mohammad Ashiqur Rahman∗
∗Analytics for Cyber Defense (ACyD) Lab, †Security, Reliability, Low-power, and Privacy (SeRLoP) Lab

Department of Electrical and Computer Engineering, Florida International University, USA
Emails: {aalme004, masif004, mdtrahma, marahman}@fiu.edu

Abstract—Hardware Trojans (HTs) are gradually becoming a
growing threat in the IoT landscape. This type of attack can
result in catastrophic incidents for unmanned aerial vehicles
(UAVs). Examples of these incidents could be information leakage,
drone malfunction, which leads to crashes, and data integrity
issues in information gathered by the sensors. Other papers have
tried to resolve this issue by focusing on enhancing encryption
and hardening the physical properties of the device to restrict
information leakage. However, this research aims to demonstrate
the efficacy of a side channel-based intrusion detection technique.
This technique uses machine learning to detect HTs. We test
this by constructing a PWM-inverting HT and implementing it
into a UAV with a Pixhawk flight controller. By doing so, we
demonstrate how this Intrusion Detection System (IDS) technique
effectively detects incidents related to HT implementation on
UAVs, analyzing discrepancies in the system’s impedance. Our
proposed IDS yields ROC and accuracy scores up to 99.5% and
98%, respectively, in detecting HTs.

Index Terms—Unmanned Aerial Vehicles; hardware Trojans;
side-channel analysis; impedance analysis; intrusion detection.

I. INTRODUCTION

Due to the decreasing prices, increasing ease of use,
and growing commercially off-the-shelf (COTS) availability,
small-scale unmanned aerial vehicles (UAVs) have gained
much attention in the public eye. According to the US Federal
Aviation Administration (FAA), small-scale UAVs will reach
$3.17M by 2022 [1]. UAVs have a wide range of applicability
in both military and civilian sectors. It is widely known that in
the combat against terrorism, speed and efficiency are of the
essence, and these factors could be significantly augmented
by modern UAV [2]. They are a valuable asset in disaster
response by providing real-time aerial imaging that can help in
search and rescue missions. In Portugal, most SAR operations
count on aircraft and ship support to find and retrieve rescue
targets, but this requires a lot of resources and manpower. The
evolving technology in UAVs is an opportunity to improve the
response capabilities of the Portuguese Navy and Air Force,
with the deployment of fewer resources and manpower [3].
Nonetheless, the positive contributions that UAVs can provide
to society are numerous. However, there is one major caveat
regarding UAVs, and that is their susceptibility to cyber-
attacks. Hardware Trojan’s (HT) effects are one of the biggest
concerns in the modern age [4], [5], [6].

An HT is a malicious modification made to an authentic
design to cause malfunction, steal or leak sensitive data,
cause denial-of-service (DoS) attacks, or impede the normal

functioning of the devices to disrupt the device completely.
The vulnerable computing devices are not limited to CPU but
also to ASICs, FPGAs, and others [7]. With the intensifying
costs of circuit fabrication plants and the overheads involved,
most IC designers prefer a setup devoid of fabrication. Conse-
quently, the devices are manufactured off-shore, where security
cannot be guaranteed or verified. With such globalization
of the manufacturing process, the community has seen an
escalation in implanted HTs in the devices [7] As part of this
research, we investigated different side channels that could
expose the presence of an HT on a UAV.

A vector network analyzer (VNA) analyzes how the device
under test (DUT) responds at various frequencies. A VNA
is a unique test device that consists of a source to generate
a signal and a receiver to detect alterations to the stimulus
signal created by the DUT. VNA injects a known stimulus
signal into the DUT and measures the signal reflected from the
input side and transmitted to the output side. However, active
digital circuits exhibit a time-varying voltage and current tend
to behave differently under different logic instructions. Using
the VNA, we determined that specific patterns in impedance
can be a characteristic signature of an HT being present.

The device impedance for active digital circuits is a func-
tion of frequency, time, and the processed instruction set.
Since there is a correlation between the switching activity
and the impedance side-channel, the underlying method to
detect hardware anomalies on a board relies on measuring the
equivalent impedance from various locations on the board [8].
We collect the impedance measurements for different logic
instructions and see the impacts to determine the correlation.
We determined that impedance, resistance, and reactance were
the most reliable parameters to help characterize the normal
and abnormal behaviors in UAVs. Hence, we leverage these in
building our intrusion detection system (IDS). The impedance
was measured using the VNA in real-time and saved to a
dataset. Hence, we used benign and attack data to train our
machine learning-based classifier to help learn this character-
ization. We evaluated our classifier on various scenarios, e.g.,
trained with only benign and both benign and malicious data
and varying the feature parameters in order to optimize the
model’s performance in detecting an HT attack in UAVs.

Overall, this study aims to develop a side channel-based
IDS against HTs on mission-critical UAVs that may selectively
alter the PWM signal or have other ramifications. The main



contributions of this study are as follows:
• Determined a feasible side channel that can be used to

construct an effective IDS and demonstrated how changes
in impedance could lead to the discovery of an HT.

• Demonstrated how machine learning classification tools
can be used to detect HTs on UAVs.

• Show how our proposed method can be more optimal and
effective than other HT detection systems.

The rest of the paper is organized as follows: We provide an
overview of UAVs and the impact that HTs have on UAVs
and IDS applications in detecting HTs in Section II. Then,
we introduce the problem definition and attack model, along
with a clear understanding of the attacker’s goal in Section III.
Section IV goes over the validation of the HTs activation
frequency to ensure that it activates at our desired pace. Then,
we discuss our experiments and observations in Section V
before proceeding to our evaluations in Section VII. Finally,
we provide a brief literature review in Section VIII before our
conclusion in Section IX.

II. BACKGROUND

Here, we provide a background on how UAVs work, how
HTs impact UAVs, and how an IDS can detect HTs.

A. Working Principle of UAVs

UAVs contain several components that allow them to func-
tion as intended by the manufacturers. One of the most critical
components is the flight controller; flight controllers ensure
that PWM signals are delivered to the appropriate motors.
Flight controllers have other functions, such as coordinating
sensors and power systems. The UAV platform has five parts:
the battery module, a differential power system, a wireless
communication and positioning system, and the main control
module [9], which all work collectively to help determine the
precise attitude for the UAVs.

The main control module on the platform used in this study
is the Pixhawk 2.4.8, a 32-bit flight controller. Sensor systems
include several gyroscopes and IMUs, which can directly deal
with more accurate posture and location information. The bat-
tery module is responsible for the power supply to each mod-
ule. This module converts and regulates voltages for the flight
control and peripheral modules. The wireless communication
and positioning module includes a data transmission, receiver,
and a GPS module. The data transmission module is mainly
responsible for data communication between flight control
and upper ground stations. The GPS module provides global
positioning information for flight control. UAV flight motors
are usually connected to the flight control through electronic
speed controllers (ESC). For this study, we focused on the
flight controller, which provides the PWM signal instructions.
This is where our testbed HT will be implemented.

B. Impact of Hardware Trojans on UAV Flights

HTs can have catastrophic impacts on the performance of
UAVs. These Trojans can leak sensitive information, turn off
critical portions of the IC, self-destruct the chip, or hinder

Fig. 1. Experimental setup of establishing an appropriate side-channel for
detecting HTs in UAVs.

performance. An example of this is as follows. A PWM is
a digital signal which is used in UAV control circuitry. The
PWM-generated signal remains high for a certain amount of
time, known as on-time. On the other hand, the period when
the signal remains low is known as off time. The on-time and
off-time of a signal control the speed of a motor.

C. IDS Applications in the Detection of HTs

An IDS is a system capable of detecting anomalies in
a device’s operation. IDS are commonly used in network
infrastructures to detect unauthorized intrusions. There are
many types of IDS, but one of the most common and effective
ones is signature-based. These types of IDS look for specific
behavioral patterns to detect malware, intrusions, and other
anomalies. Signature-based IDS suffers from the huge number
of signatures stored in its database. Some researchers provided
the concept of frequent signature databases to solve database
size problems but never discussed how to deal with new and
old signatures that became unnecessary [10].

However, for purposes of this study, we do not require a
large database of signatures, and due to the erratic behavior
of activation frequencies found within HTs, a signature-based
IDS would be the most feasible option since we are looking
into behavioral patterns of impedance. Our testbed setup,
consisting of a UAV flight controller, the HT circuit, a VNA,
and a jMAVsim simulator, can be seen in Figure 1.

III. ATTACK MODEL

This section illustrates the threat model that is used for
conducting our tests. Our threat model consists of an HT
capable of inverting the PWM signals on UAVs, along with a
description of how the attacks are carried out. HTs are increas-
ingly becoming a significant threat that risks the security of
the modern Integrated Circuits (ICs) industry. An adversary
intentionally modifies the IC design to cause operational
failure, denial of service, or leaking of valuable information
from the IC. To facilitate research work in this area, a better
understanding of what various types of HTs would look like
and their impact on an IC design is essential.

A. Attack Assumptions

The framework consists of the following assumptions:
• Attacker has complete knowledge of flight controllers,

FPGA, IC and HT design.
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Fig. 2. HT activation flowchart for our HT design.

TABLE I
HT COMPONENTS

CDx4HC21 Dual 4-Input AND Gates x1
CD4053B CMOS Single 8-Channel Analog Multiplexer x2
CD4011B CMOS NAND GATES x1

• We assume that the HT can be implemented at any phase
within the supply chain, and the HT can go undetected.

• We consider the attacker to have access to the appropriate
tools and components that are necessary for HT design.

B. Attack Technique

In this threat analysis framework, we will implement an HT
between the flight controller and the motors of the quadcopter
drone. An HT is composed of a trigger circuit and a payload
circuit. A good design of the trigger and payload is crucial
for this study’s effectiveness, as it controls the HTs’ behavior
and allows us to determine later whether our IDS can detect
stealthy designs. We define the following two circuit utilities:
Trigger Circuit: A trigger circuit consists of a triggering
condition capable of switching the payload circuit on or
off. The trigger circuit only activates the HT payload during
specific case scenarios. This controlled environment allows the
malicious payload to be executed in precise moments. Thus,
it provides a layer of obfuscation in which the user may not
suspect anything wrong until it’s too late. A well-designed and
sophisticated trigger circuit makes the HT much more stealthy
and dangerous. The main requirement for the trigger is not to
be activated continuously because it can be detected from the
manufacturer’s functional tests. The second mechanism, the
payload, implements the effective function of a Trojan [11].
Payload Circuit: In this circuit, the malicious phenomena are
executed upon being triggered. This is the most essential part
of the HT, where the malicious instructions are stored and
carried out. A series of multiplexers that invert the PWM signal
is an example of a payload circuit that provides disruption.

C. Attack Goal

The attack goal generates parameterized attack procedures
and functions that target a specific IoT device, in our case, a
UAV. The attacker’s main goal is to cause instability in the
UAV’s flight by inserting an HT that will selectively alter the
duty cycle of the PWM signal being sent to the motors.

D. Discussion on the HT Design

HTs have great potential to be undetected if they can be
inserted at places not directly protected by Trojan detection

Fig. 3. Our HT design to be implemented on the UAV.

mechanisms [12]. This would cause instability in the UAV
rotors, potentially leading the device to crash or have difficulty
navigating its intended flight course. Each input would corre-
spond to a data channel in the PX4 flight controller responsible
for sending instructions to the rotors; an illustration of the
circuitry setup is provided in Figure 3. The trigger circuit is
highlighted in blue, whereas the payload is the multiplexers.
Another illustration is provided in Figure 2 for the activation
process. If an HT is always active, i.e., the payload is always
executed, the purpose of stealth will be defeated; hence, an
optimal trigger should be selected to remain stealthy yet
achieve the attack goal. For our design, the trigger circuit’s
output, based on our logic table that follows the schematic,
will be true if the values of the PWM signal are 1011, i.e., the
PWM signals for the first, third, and fourth motors are active
while that of the second is not active.

Another design that was used as part of our evaluation had
a payload that would leak information regarding the sensor
data. This would allow attackers to gain valuable insights into
the UAV’s surroundings and operation, as well as discover
possible side channels that can later be exploited in future
attacks. While this setup may appear to be simplistic by
design, the impact it has on the PWM signals is significant
enough to cause catastrophic damage. The impact of HT on
the UAV’s flight by our design can be further understood
from the case study in section VII of this paper. Due to the
trigger circuit activation frequency, our design can be difficult
to detect without analyzing its side channels. [13] and [14]
both provide effective stealthy HT detection methods that use
a simple design. This demonstrates that a complex HT design
is unnecessary in innovating effective countermeasures.

IV. HARDWARE TROJAN ATTACK IMPLEMENTATION

This section provides a detailed overview of IC components
used to develop the circuit containing the hardware Trojan.
An initial design for the HT did not work as intended. The
initial design utilized a CD74HC04 Hex inverter. However,
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Fig. 4. HT validation setup using LCD and Arduino UNO.

the hex inverter was incompatible with our design due to its
parasitic properties. Due to insufficient voltage made it much
more difficult for the payload to be delivered to the motor
ESC. The current design replaces the hex inverters with NAND
gates. We can have it output the opposite value by shorting
one input for each NAND gate. This value inversion is crucial
for the development of the payload circuit of the HT. The
Pixhawk flight controller has male pins on its side that are
meant for the user to connect their motor power module. These
pins transmit a PWM signal, which indicates instructions for
the motor. Using a female-to-male cable, we can redirect the
PWM signal to our trigger circuit, as shown. The output from
our multiplexers is then sent to the four ESC motor power
modules. It is important to note that the PWM signal remains
unchanged if the trigger circuit is inactive.

A. Side Channel Analysis

Active digital circuits exhibit a time-varying voltage and
current draw dependent on the internal instruction cycle. The
device impedance for active digital circuits is a function of
frequency, time, and the processed instruction set. Instead
of targeting the primary algorithm or data directly, side-
channel analysis focuses on the operational characteristics and
properties of a system, such as its power consumption, EM
radiation, timing patterns, or even sound; this is then used to
infer sensitive information that would usually be considered
confidential, such as encryption keys. Cryptography should
be designed securely against power analysis attacks so that
attackers cannot extract its security key [15].

B. Validation of HT Activation Frequency

To assimilate an accurate understanding of how the HT
operates, we first needed to gather data about how often the
HT gets activated at separate time intervals. To capture this
data, we used an ARDUINO UNO, which takes in the output
from the multiplexers of the payload circuit as a new input.
We also used an LCD screen and programmed the Arduino
so that whenever the HT gets activated, it displays a value on
the screen. The value is an incremental counter that adds one
whenever the HT starts. We can then fetch the data using the
Data Streamer feature on Microsoft Excel and save the results
onto a spreadsheet to produce a graph. We can start gathering
data after making the necessary connections and uploading
the code to the microcontroller. The data was collected for a
maximum of 100,000 cycles using the data streamer utility.
This test ensures that the HT is activating less than 6.25

(a) (b)

Fig. 5. (a) VNA impedance results without HT. (b) VNA impedance results
with HT. The presence of irregularities here is indicative of the presence of
HTs.

TABLE II
HT EXECUTION VALIDATION

Timeframe Number of Cycles HT Activation Frequency HT activation Rate
10 minutes 2251 78 3.46%
1 hour 7237 451 6.23%
1 hour repeated 11954 502 4.19%

percent of the time. This is to ensure that our model accurately
depicts a stealthy HT. Our first test consisted of letting the
model run for 10 minutes. This resulted in an activation rate
of 3.46 percent. Table II illustrates the activation rate values.
Based on these results, we can discern that the HT operates
within its permissible activation rate.

V. CASE STUDY

Here, we demonstrate the experiments that were carried out
to validate the relationship between impedance and abnormal
behavior. We also discuss our observations and results.

A. Experiments

As a part of this study, we were interested in knowing
the effects and impact of the HT on the UAV. We used a
simulation environment provided by Pixhawk called jMAVSim
to accomplish this task. Using jMAVSim and observing the
results stored in the logs, we observed a relationship between
the HT activation and the thrust of the UAV. These fluctuations
in thrust affect the overall altitude control of the drone and,
when subsequently activated, cause the drone to crash. To
perform HT detection using machine learning models, an
essential first step is to extract and quantify distinguishing
features for characterizing Trojan logic [16].

Our deep learning model, consisting of an XGBoost clas-
sifier (XGB), provided promising results in detecting HTs on
UAVs. We then plotted the predicted and actual values for the
training dataset. Our values are stored and loaded onto XGB,
which generates an output of 1 for each row. This indicates that
the HT is activated for each row that contains a 1. Conversely,
if a row has a 0, the HT remains inactive, meaning the three
parameters are within normal operational ranges, and no HT
is present. Remember that we are dealing with an inverter HT;
these results may differ depending on the Trojan used. We used
Smith charts to visualize impedance patterns comprising real
and imaginary components, resistance, and reactance. For this
reason, it has become an industry standard in RF engineering
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Fig. 6. Behavior of the parameters with and without a HT.

to use Smith charts to analyze impedance. An experiment
demonstrated that a combination of impedance, resistance,
and reactance is a good input for our IDS model. This was
done by comparing different physical parameters of the DUT
operation, which were also gathered by the VNA, such as
resistance, phase, reactance, and power consumption. We also
set up different payloads for the HT, which leaks sensor data
rather than invert the PWM signals. This experiment is further
evaluated in Section VII-B.

B. Observations

One observation made relates to the IDS performance
when using different ML classifiers. Our classification results
demonstrate a high level of precision and accuracy. Our
research indicates that combining deep learning and classifica-
tion models can be integrated to detect and mitigate hardware
attacks on UAVs. Precision is vital to us because it shows
the quality of the model’s predictions. This quality can be
calculated as the ratio of the total number of true positives over
the sum of true and false positives. Conversely, recall is also
beneficial in our analysis because it demonstrates sensitivity
and specificity. Observing the score is also essential because
it measures the test’s accuracy. Without a good F1 score, the
results for the precision and recall would lack credibility.

Looking at the two Smith charts generated by the VNA,
graphs show a clear difference when an HT is present. We
notice much more erratic behavior in the impedance during
the presence of an HT due to the disruption it causes and
the additional logic-switching activities that aren’t considered
in the manufacturing process of the DUT. We can also see
differences in impedance, resistance, and reactance.

VI. PROPOSED DEFENSE TECHNIQUE

Our defense model proposal utilizes a neural network with
XGB to detect an HT effectively in UAVs. Based on the
results gathered by the experiments in our case study, the best
XGB inputs are three parameters: impedance, resistance, and
reactance. We can train the time series model using these three
parameters and provide a set of predicted values for each.

Fig. 7. Flowchart illustrating the process flow of the proposed IDS.

This allows us to use XGB later to categorize each accurately
predicted parameter combination as benign or malicious. We
selected XGBoost for our UAV IDS because it excels in
processing complex data, crucial for identifying hardware
Trojans through parameters like impedance and resistance.
Its robustness against overfitting and ability to highlight key
features align with our IDS requirements. Additionally, XGB’s
efficiency and adaptability are crucial for potential real-time
IDS applications in UAVs, offering a scalable solution that re-
mains effective against the dynamically evolving landscape of
HT threats. Using this method, we could predict the timing of
the trigger circuit activation for the HT. This allows researchers
to look into mitigation strategies and countermeasures that can
be put in place that consider the HT activation timing. The data
we collected using the VNA is a time series, as it provides
new parameter values for each frequency sweep. Frequency
sweeps were set to occur every 65 milliseconds.

Therefore, we would obtain fresh values for impedance,
resistance, and reactance after every sweep. By comparing
the HT and HT-free models using the integrated Smith chart,
we observed significant changes to the UAVs’ impedance,
resistance, and reactance levels, as shown in section VI. We
chose the XGB classification model for its high accuracy and
robustness. As a part of our dataset, we must collect many
power traces (10002, to be exact). The XGB allows us to avoid
over-fitting and handling complex, high-dimensional data. It
provides a higher accuracy rate than other models; this is very
important to consider due to the nature of the application. The
XGB also provides feature importance, allowing us to under-
stand which features contribute the most to the classification.
Figure 7 shows the flowchart that depicts our IDS process,
where data from a UAV with a hardware Trojan is analyzed
for impedance, resistance, and reactance using a VNA, and
then XGBoost classification is employed to train the model on
this data, subsequently evaluating the predictions to determine
the presence of an HT. By using XGB, we can develop a
side channel-driven IDS that we could use for UAVs. This
impedance-side channel-based IDS can detect the presence
of HTs through impedance patterns. A real-time application
would require a method of gathering impedance data while
the UAV is in operation, which does not rely on a VNA. It is
currently out of scope but holds potential for future work.
Discussion on Practical Implementation of the Proposed
IDS: To practically implement our proposed IDS on board
the UAVs for detecting HTs, a design focused on resource
efficiency, real-time operation, integration with UAV control

5



systems, and adaptability is essential. The IDS should be
lightweight to accommodate UAVs’ limited computational and
power resources, employing algorithms that are efficient yet
effective in detecting anomalies associated with HTs. Real-
time detection capabilities are crucial for timely identification
and mitigation of threats, necessitating the IDS to process data
quickly and with minimal latency. Seamless integration with
the UAV’s existing control systems ensures that the IDS can
monitor relevant system behaviors without disrupting normal
operations. Lastly, the system must be adaptable to various
UAV configurations and capable of updating its detection
algorithms to counter new and evolving threats, ensuring long-
term viability in diverse operational environments.

Considering the resource costs and hardware options for
implementing an IDS in UAVs, it’s essential to evaluate com-
putational efficiency, energy consumption, and physical inte-
gration constraints. Field-programmable gate Arrays (FPGAs)
are an optimal choice for IDSs as they balance computational
power and energy efficiency. FPGAs allow for the execution
of complex detection algorithms, including machine learning
models, with greater flexibility and lower power consumption
compared to traditional microcontrollers (MCUs) or general-
purpose processors. This adaptability is crucial for maintaining
the IDS’s relevance against evolving threats while adher-
ing to the stringent resource limitations of UAV platforms.
Application-specific integrated Circuits (ASICs) represent the
high end of performance and energy efficiency for fixed-
functionality IDS implementations but lack the flexibility of
FPGAs, which renders them less ideal for environments where
threat dynamics frequently change. Although powerful, Graph-
ics Processing Units (GPUs) are generally unsuitable for most
UAVs due to their significant energy requirements. Thus, FP-
GAs strike the most effective balance for IDS implementations
in UAVs, providing the necessary computational resources for
advanced security measures without compromising the UAV’s
operational efficiency or mission duration.

VII. EVALUATION

This section presents the HT model findings and the feasibil-
ity of implementing our proposed framework. We evaluate the
proposed IDS considering the following research questions.
RQ1 Can the IDS detect the presence of HTs of varying
activation frequencies?
RQ2 How effectively is our IDS detecting different HTs?
RQ3 Do different parameter variations improve results?
RQ4 How effective is the side channel-based defense tech-
nique in detecting the HT at different thresholds?
RQ5 What is the computational load?
RQ6 How feasible is it to implement the IDS model?
RQ7 How do different classification models perform, and
which one is most optimal?

A. Performance with Varying Activation Frequencies [RQ1]

While our IDS tends to perform well with a 1/16th of a time
activation frequency, we wish to evaluate our performance with
other frequencies. Based on our observations, it becomes clear

that the ROC Score tends to decrease with higher activation
frequencies. The results demonstrate that our IDS may be less
effective on extremely low activation frequencies due to the
possibility of it detecting too many type I and type II errors. As
shown in a similar study, When a Trojan affects the behavior of
the circuit rapidly, the detection of Trojan becomes easier [17].

This experiment was done by comparing the IDS results
at different activation frequencies. This experiment aimed to
determine how the IDS performed at varying trigger circuit
activations, which is essential to consider as HTs tend to all
have different trigger mechanisms. Unlike other studies, our
results demonstrate that our IDS performs well even with
varying activation timings and detects HTs even when the
activation frequency is less than 3 percent of the time.

B. IDS Performance with Different HT Payloads [RQ2]

To test whether our IDS would work for different HTs,
We added a temperature, humidity, and light sensor to our
HT for this test. We used an Arduino UNO to mimic a
microcontroller that can send this sensor data over to an SQL
database only when the trigger circuit of the HT is activated.
The purpose of this is to simulate a scenario where there is an
information leakage payload. Using the new parameter dataset
collected for this HT Payload, the IDS performed reasonably
well in detecting the presence of an HT. While the ROC Score
could be better when compared to our original design, it still
yielded a score of 0.97, as shown below. With some minor
tweaking, this IDS model can be applied to different types of
HT payloads. The classification model was XGB because it
yields the highest performance. This experiment was needed
to understand the effectiveness that our IDS has for other HT
designs. The performance results also demonstrate that this
IDS can detect HTs using different payloads.

C. Performance with Varying Feature Combinations [RQ3]

We evaluated the results using different parameters to under-
stand which worked best with our IDS. We do this by compar-
ing the ROC Score values for each. Upon evaluation, it is clear
that the best parameter combination that provides the highest
ROC score is the one that considers the impedance, resistance,
and reactance. The second best-performing parameter setting is
the one consisting of impedance and resistance. The parameter
that provides the lowest ROC score is reactance, whereas the
one that provides the highest is Impedance. This was done by
manually testing each parameter combination and observing
the results individually. This is important to determine the
best possible combination for a precise and accurate IDS. One
advantage of these findings over other proposed IDS methods
for HTs is that they can be universally applied, as impedance,
resistance, and reactance are all expected consequences of the
physics of a UAV operation.

Pixhawk
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Circuit

Payload 
Circuit

Hardware Trojan
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Node
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SQLData sent to 
a remote serverUAV 

Fig. 8. Information leakage of new HT flowchart.
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D. Varying Threshold Performance Evaluation [RQ4]

We evaluate the performance of the IDS using different
threshold settings for the XGB. Our results demonstrated a
negligible impact on the IDS performance when using differ-
ent threshold settings for the XGB. Specifically, the higher
the threshold, the lower the ROC Score. We were able to
determine that the optimal threshold setting is within 0.6. A
threshold setting of 0.6 is suitable for detecting HTs because
it requires a fair balance between precision and recall. Higher
thresholds lead to higher precision but lower recall. Lower
thresholds lead to higher recall but lower precision. In our
case, higher precision would be more critical to minimize
false detection. In contrast, a higher recall would allow us to
detect HTs even with false positives. We wanted to prioritize
precision, so our threshold was set to 0.6. The thresholds
were manually configured within the classification models
script. The results for each threshold were then compared to
determine the appropriate threshold value.

E. Computational Load and Ease of Implementation [RQ5,
RQ6]

Computational load is essential to consider when imple-
menting an IDS on a UAV. Heavy computational loads could
increase the time it takes for the IDS to detect an HT; on
mission-critical UAVs successfully, this would pose a problem
as they require a fast response time. For this section, we will
calculate the time it takes for the IDS to run and how much
space it occupies in memory. We calculated the process time
in milliseconds using Python’s ‘time’ library. On average, it
takes roughly 86ms and occupies 197MB of memory. Due to
these results, it is safe to assume that this IDS implementation
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Fig. 10. ROC score for the performance of side-channel driven IDS on
information leakage HT.
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Fig. 12. Performance metrics for different thresholds.

method is feasible as modern computational power exceeds
197MB of memory. Although some UAVs will require the IDS
to perform their functions on an edge node within a network
due to the limiting specifications of flight controllers if the IDS
were to be running while the UAV is in operation. However,
if we were to assume that our IDS would run before each
flight mission, we wouldn’t need additional resources. Due to
implementation ease and its cost-effectiveness, this proposed
IDS technique is much more feasible than current methods.

F. Performance Evaluation of Classification Models for our
IDS Technique [RQ7]

For this evaluation, we tested the performance of our IDS
using different ML classification models to see which one
performed optimally. Our performance metrics consisted of
Accuracy, F1-Score, and ROC-AUC. These three metrics were
measured for the following classification models: Random For-
est, Linear Regression, K-Nearest Neighbor, Support Vector
Machine, and XGboost. Based on our results, XGBoost pro-
vided the highest performance at correctly classifying whether
or not there is an HT based on our input parameters of
impedance, resistance, and reactance. The second and third
best classification models are that of K-Nearest Neighbors and
Random Forest. The classification models that performed the
worst were Linear Regression and Support Vector Machine.
We could see an illustration of our performance for different
ML classifiers in Figure 13(a) and Figure 13(b). Using a sep-
arate dataset, we also evaluated and compared the ROC-AUC
curves for the different classification models and obtained the
same observations as our previous tests. Based on these results,
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Fig. 13. Performance comparison for different ML classifiers.

we decided to stick to XGBoost as our side channel-based
intrusion detection system classification model.

VIII. RELATED WORK

This section provides a brief literature review on similar
techniques and findings that have helped develop this IDS.

A. Side Channel Techniques for HT Detection

A paper that describes a side channel technique for HT
detection using thermal maps demonstrates that side channels
can effectively detect counterfeit circuits. The researchers of
this study performed post-silicon power mapping on residual
thermal maps to see HTs. The critical problem faced with
this study is that sometimes, the heat generated is below the
required resolution for the heat detector. Due to this issue,
the proposed method could fail at detecting specific HTs that
activate less frequently. Another study demonstrates how a
backscattering side channel can also be used to detect HTs.
These channels can be created by propagating a continuous-
wave signal toward the chip. The transistor switching activities
cause changes in the chip impedance, which modifies the cir-
cuit’s radar cross-section (RCS). The changes will be reflected
in the backscattered signal, which is beneficial to detecting
HTs [18].

There are many advantages to using the backscattering
side channel. These advantages are higher bandwidth, signal
strength unaffected by leakage, and an adaptable frequency.
The issue with these methods is that they are hard to imple-
ment due to the cost of necessary equipment and the expertise
and skill required for the implementation and result analysis.
Unlike these studies, this paper demonstrates an ease of imple-
mentation method that is also cost-effective. Our method does
not rely on too much equipment or knowledge beyond that of
junior-level programming experience. Due to these advantages,
our side channel-based IDS can be widely integrated into many
applications. Despite the isolation mechanisms available to
cloud service providers, like virtual machines and containers,
the problem of side channel vulnerabilities due to shared
caches and multicore processors remains a threat [19].

This paper demonstrates that side channels can be protected
by isolating cloud processes when multicore chips share the
same caches. This was accomplished through a Co-scheduling
technique. The kernel can invoke CLFLUSH on the entire
virtual address space. While this is guaranteed to work across
processor generations, this approach is too costly, taking up

to 10x the kernel timeslice on applications tested [19]. Our
approach is much more feasible as it does not impose a heavy
burden on the computational load. Another study presents a
novel representation of cyber-physical systems wherein the
states of the physical system are incorporated into the cyber
system and vice versa. Next, using this representation, optimal
strategies are derived for the defender and the attacker using
the zero-sum game formulation, and iterative Q-learning is
utilized to obtain the Nash equilibrium [20]. This type of
defense takes advantage of the Q-learning model instead of
our XGB model. Using this model, the researchers found
relationships between physical and cyber systems.

As a result, the cyber system states affect the biological
systems’ controller design and vice versa. Unfortunately, this
approach would not be practical for UAVs because we cannot
risk leveraging either side of the system, physical or cyber.
For this reason, the decision to use an XGB rather than a
Q-learning model was made. Our results demonstrate a high
level of accuracy without imposing any risk to the physical or
cyber components of our UAV.

B. Machine Learning for Anomaly Detection

Several studies demonstrate that anomaly detection can
be performed using ML classifiers. One study concluded
that the number of layers and cells are essential parameters,
alongside window size and threshold. One of the best machine
learning methods is autoencoder-based anomaly detection. An
autoencoder aims to understand a representation (encoding) for
a set of data, typically for dimensionality reduction, by training
the network to ignore signal “noise” [21]. Traditional anomaly
detection techniques include isolation forest algorithm, local
outlier factor detection algorithm, one-class support vector
machine algorithm, and statistical model [22]. The isolation
forest algorithm distinguishes outliers by establishing isolation
trees and calculating anomaly scores, which can effectively
determine and detect isolated outliers. Still, it is not applicable,
particularly for high-dimensional data [23]. The deep feature
extraction capability and the efficient massive data processing
of ML algorithms make them stand out in detecting time
series anomalies [24]. Contrarily, our model does not use
autoencoding as it only uses XGB. This study demonstrates
how using. XGB to detect HTs provides exceptional results.

C. Automated Techniques in Hardware Trojan Detection

There has been some research that looks into the possibility
of having an automated method in hardware Trojan detection.
One particular paper is [25], which incorporates an assertion-
based validation method in order to automate the detection
of hardware Trojans. This method provides a solution that is
scalable, due to its linear memory requirement, as mentioned
on [26]. Because [25] uses reinforcement learning, it differs
from our proposed method which uses supervised learning.
While it may be beneficial to have an automated technique in
detecting HTs, we deemed it to be unnecessary to demonstrate
our proof of concept. This is because it would be unfeasible
to measure impedance while a UAV is in a flight mission
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due to the many factors that may impact the quality of the
results. Measuring impedance is a very sensitive task, and
something as simple as wind would produce false readings.
Due to this reason, we elected to propose a method that can
detect hardware Trojans while the UAV is stationary and under
supervision.

IX. CONCLUSION

In conclusion, this paper demonstrates the importance of
effective countermeasures to ensure the security of mission-
critical UAVs. We introduced HTs and their implications in
UAVs. Through experiments, we determined a side channel to
construct an IDS to detect HTs. We defined our problem and
attack model by creating our testbed HT and inserting it into a
UAV. Our defense proposal consists of an XGB classifier that
takes in three side-channel parameters, impedance, resistance,
and reactance, to detect the presence of HTs. Our results
demonstrated that by using ML, we can efficiently detect HTs
on UAVs. For future studies, we would like to see if we
can develop other side channel-based techniques for different
kinds of threats in UAVs. Moreover, our defense mechanism’s
versatility underscores the broader potential of ML in ensuring
UAV security against evolving threats. For future works, we
would like to demonstrate the possibility of an IDS technique
that does not depend on machine learning. We could also
benefit from a node insertion analysis, to study the impact that
the HT may have depending on its location of implementation.
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