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Abstract—The Optimal Power Flow (OPF) routine used in
energy control centers allocates individual generator outputs by
minimizing the overall cost of generation subject to system level
operating constraints. The OPF relies on the outputs of two
other modules, namely topology processor and state estimator.
The topology processor maps the grid topology based on statuses
received from the switches and circuit breakers across the
system. The state estimator computes the system state, i.e.,
voltage magnitudes with phase angles, transmission line flows, and
system loads based on real-time meter measurements. However,
topology statuses and meter measurements are vulnerable to
false data injection attacks. Recent research has shown that such
cyber attacks can be launched against state estimation where
adversaries can corrupt the states but still remain undetected.
In this paper, we show how the stealthy topology poisoning
attacks can compromise the integrity of OPF, and thus undermine
economic operation. We describe a formal verification based
framework to systematically analyze the impact of such attacks
on OPF. The proposed framework is illustrated with an example.
We also evaluate the scalability of the framework with respect to
time and memory requirements.

Keywords—Power Grid, State Estimation, Optimal Power Flow,
Impact of Stealthy Attacks, Formal Method.

I. INTRODUCTION

Cyber technologies are increasingly used in smart power
grids with the promise of providing larger capacity, higher
efficiency, and more reliability. While this integration helps
energy providers to offer smarter services, real time demand
responses, and economic advantages, power grids also become
vulnerable to cyber attacks, particularly cyber intrusion and
false data injection, which can cause improper controls leading
to serious damages including power outages and destruction of
critical equipment [1], [2].

In modern energy control centers, the Energy Management
System (EMS) refers to a set of of computational tools which
are employed for system wide monitoring, analysis, control,
and operation. A schematic diagram of EMS and its modules
are shown in Fig. 1. State Estimator (SE) is a core module
in EMS that estimates the system state variables from a
set of real-time telemetered measurements (from meters) and
topology statuses (from breakers and switches). The term
“state” denote bus voltages, from which transmission line
power flows can be computed. As seen in Fig. 1, the output
of state estimation is required by several other modules for
economic dispatch calculations and security assessment.

Recent research has shown that state estimation is vul-
nerable to stealthy attacks, where adversaries can remain

Fig. 1. Energy control center system security schematic (thanks to Allen J.
Wood and Bruce F. Wollenberg, Power Generation, Operation, and Control,
2nd Edition)

undetected despite injecting false data to corrupt the state
estimator’s solution [3]. Such attacks are termed as Undetected
False Data Injection (UFDI) attacks. These attacks are based
on the idea of corrupting measurements in a manner that is
consistent with the measurement model. In state estimation,
redundant measurements are used to detect and filter bad data
(i.e., erroneous meter measurements) by checking whether the
measurement residual, which is the l2-norm of the difference
between observed and estimated measurements, is below a
threshold [4], [5]. Therefore, an adversary who has perfect
knowledge (i.e., who knows the complete measurement model)
can then manipulate measurements consistent with the mea-
surement model to bypass the bad data detection process [3].
In [6], [7], it is shown that UFDI attacks by adversaries
with perfect knowledge can be defended if a strategic set of
measurements is secured (i.e., data integrity protected).

The primary goal of this work to understand the impact of
false data injection attacks on economic operation of power
grids, more specifically on Optimal Power Flow (OPF). The
OPF module determines the generator set-points required for
Automatic Generation Control (AGC), as seen in Fig. 1. The
OPF allocates optimal generator set-points to minimize the
overall cost of generation while meeting system constraints.
These set-points drive the power generation commands for
the control loop of Automatic Generation Control (AGC),
that regulates the generator’s output. The OPF depends on



the state estimation result (i.e., the states) and the topology.
The topology processor maps the grid topology based on
statuses received from the switches and circuit breakers across
the system. As shown in Fig. 1, different modules in EMS,
particularly state estimation and OPF are performed based on
this topology. Therefore, corrupting the topology as well as
the state estimation solution can result in an OPF result that
is no longer optimal, i.e., it can result in expensive generation
dispatches. However, these attacks need to be stealthy enough
to evade the bad data detection process. With this primary
intuition, in this paper we develop a framework that can sys-
tematically analyze the impact of stealthy topology poisoning
attacks on OPF. Specifically, our contributions are as follows:

• We define a formal framework for the impact analysis
of topology attacks on OPF. The framework includes
(i) modeling of stealthy topology attacks, (ii) modeling
of OPF, and (iii) modeling of topology attacks’ impact
on OPF. In topology attacks, errors are introduced in the
topology statuses which make the topology processor to
exclude lines actually in service and include lines not in
service. We also show that an adversary can strengthen
the impact of topology attacks on OPF by infecting states,
i.e., incorporating UFDI attacks on state estimation.

• The proposed formal framework is modeled as a con-
straint satisfaction problem, which is implemented us-
ing an efficient SMT (Satisfiability Modulo Theories)
solver [8]. We present an example in detail to illustrate
how our framework verifies the potentiality of stealthy
attacks with respect to an desired impact on OPF. We
also evaluate the scalability of our proposed framework in
terms of time and memory. Since our framework includes
topology attacks and OPF together and these systems
work mostly with real values, we apply a number of
strategies to increase the scalability.

The rest of this paper is organized as follows: Section II
presents background materials. Formalization of attacks and
their impact on OPF are presented in Section III. Evaluation
results are presented in Section IV. The related work is briefly
discussed in Section V, which is followed by the conclusion.

II. BACKGROUND AND MOTIVATION

We first review the DC power-flow model, which has been
widely used to analyze stealth attacks on state estimation (e.g.,
[3], [9], [10]). Our analysis of OPF is also based on this model
which is simplistic, yet useful in preliminary analytical power
systems studies.

A. DC Power Flow Model

The DC power flow model describes the power balance
equations in a lossless power system [11]. With voltage
magnitudes at all buses fixed at 1 per unit (p.u.), the only
variables are phase angles. Therefore, the voltage phasor at
bus i is given by 1∠θi. Denoting the admittance of the line
between buses i and j by Yij , the real power-flow (Pij) across
a transmission line is given by: Pij = Yij(θi − θj) where
Yij is the reciprocal of the reactance. The model expresses
the power-balance constraint which equates the algebraic sum
of powers incident at every bus to zero. This yields a linear
system of equations of the form: [B][θ] = [P]. One of the

buses is designated as the reference bus i.e., slack bus, where
θi = 0. Assuming n buses, [B] is a n− 1 dimensional square
matrix, and P is a n − 1 dimensional column vector whose
elements denote the net power demand at a bus and [θ] is a
column vector of unknown phases corresponding to the bus
voltage phasors. The model solves the unknown bus voltages,
given the net power demands (i.e., generation and/or load) at
every bus and the line reactances. This linear model provides
the basis for DC state estimation which is described next.

B. State Estimation and UFDI Attack

The state estimation problem based on the DC model is to
estimate the bus voltages given several measurements of trans-
mission line power flows. Specifically, one needs to estimate n
number of the state variables x = (x1, x2, · · · , xn)T based on
m number of meter measurements z = (z1, z2, · · · , zm)T [5].
Under the DC power-flow assumptions, the measurement
model is linear (i.e., the measured power-flows are linear
functions of the bus voltages) and hence the measurement
model reduces to:

z = Hx + e, where H = (hi,j)m×n

The measurement set is redundant, i.e., m > n which
constitutes an over-determined set of linear equations. The
redundancy enables detection, elimination, and smoothing the
effect of unavoidable gross measurement errors. When the
measurement error distribution is Gaussian with zero mean,
the state estimate x̂ is given as:

x̂ = (HTWH)−1HTWz (1)

Here, W is a diagonal “weighting” matrix whose elements are
reciprocals of variances of the meter errors. Thus, estimated
measurements are calculated as Hx̂. The measurement residual
||z −Hx̂|| is used to determine bad data. If ||z −Hx̂|| > τ ,
a selected threshold, it indicates bad data.

The main idea in [3] is to generate a stealthy attack vector
that can bypass the bad data detection process as follows.
Consider an attacker who injects arbitrary false data a to the
original measurements z such that a = Hc, i.e., a linear
combination of the column vectors of H. Here, c is added
to the original state estimate x̂ due to the injection of a. Since
z+a = H(x̂+c), the residual ||(z+a)−H(x̂+c)|| still remains
the same as ||z−Hx̂||. Thus, the bad data detection is evaded.
Since our work studies the stealthy attacks by corrupting the
topology, we describe the associated module next.

C. Topology Processor

EMS uses a topology processor (refer to Fig. 1) to map
the grid topology. This processor receives telemetered statuses
of various switches and circuit-breakers in the system to
determine network connectivity. When the connectivity ma-
trix A and the branch admittance matrix D are known, the
measurement matrix H is computed as follows (as in [12]):

H =

 DA
−DA
ATDA

 (2)

Matrices DA (i.e., multiplication of D and A) and −DA
represent the line power flows in forward and backward



directions, respectively. The matrix ATDA represents power
consumption at the buses.

The state estimated solution (from Equation (1)) estimates
bus voltages from which the system power-flows are computed.
Summing up the net power flows incident on a bus then yields
the estimated power (or load) at that bus. System conditions
determined from state estimation are then used in the OPF
module (see Fig 1) which is described next.

D. Optimal Power Flow

The optimal power flow (OPF) problem aims to minimize
the total cost of generation subject to the following constraints:
(i) the total system load is served and (ii) honoring equipment
ratings, transmission line limits and control variables, [11].
Denoting the cost of generation from generator k by Ck(Pk),
where Ck depends on the nature of plant (e.g., fossil fired,
combined cycle, etc.). the OPF problem (with the DC flow
model) is described by:

min
∑
i

Ck(Pk) s.t. (3)

[B][θ] = [P] (4)
|Pij | ≤ Pmaxij (5)

Pmink ≤ Pk ≤ Pmaxk (6)

Here, Equation (3) describes the objective function of min-
imizing the total cost of generation, subject to power-flow
constraints in Equation (4), transmission line capacities in
Equation (5) and generation capacities in Equation (6).

E. Attack Model
Here, we characterize attacks in terms of attributes to assess

their impact on the OPF. Our goal is to describe attacks in
their most general form so that adversarial capabilities can
be modeled. The attributes that represent the attack model
includes mainly the attacker’s accessibility, resources, and
knowledge of the system.

Adversaries may only have restricted access to measure-
ments, when physical or remote access to substations is
restricted or when certain measurements are secured. Further,
an adversary may be constrained in terms of cost or the efforts
to mount attacks on vastly distributed measurements. In such
cases, an adversary is limited to compromising only a limited
subset of measurements. Also when the measurements targeted
for corruption are distributed in many substations, i.e., buses,
then it is difficult to inject false data to those measurements
compared to the case when the measurement set is distributed
in a small number of substations. An attacker who has access
to a substation (or to the corresponding remote terminal unit)
can compromise measurements taken there [13].

State estimation of a power system is done based on
the given topology (i.e., connectivity among the buses) of
the grid. For a successful UFDI attack, an attacker needs to
know the grid topology and the electrical parameters of the
transmission lines, which is not trivial [3]. In the case of partial
knowledge, the attacker’s capability becomes restricted. On the
other side, as the topology is mapped by a topology processor
by compiling the status of all switching devices, an adversary
can manipulate the topology by injecting false status.

Fig. 2. The framework for finding the impact of UFDI attacks on OPF.

F. Objective
Although the prior works (e.g., [3], [9], [2], [14], [10])

addressed stealthy attacks in power grids, it is quite challenging
to explore the impact of such stealthy attacks. Thus, we model
the impact of stealthy topology attacks on OPF, whose solution
will provide answers to queries such as: Given an attack
scenario, when is a UFDI attack possible that can make
a desired impact on OPF?. Answering this may allow grid
operators to preemptively analyze and explore potential threats
under changing attack scenarios.

It is worth mentioning that undetected attacks cannot
increase total system loading; but can only change the loads
of two or more buses (i.e., some loads increase, while some
loads decrease). This inference follows from two assumptions:
(i) the measurements of the generated power are secure and (ii)
the total generated power is equal to the total load. Therefore,
the increase in the cost happens mainly due to the limitation of
the transmission line capacities. Influencing the OPF cost even
in a small amount is therefore challenging and our proposed
approach attempts this by establishing a formal model.

III. FORMAL MODEL OF ANALYZING IMPACT OF
TOPOLOGY POISONING ATTACKS ON OPF

In this section, we first discuss briefly the framework of
verifying the impact of stealthy attacks on OPF. Then, we
discuss the associated formal models. We provide explanatory
examples to demonstrate the formal framework.

A. Framework

We follow the framework as shown in Fig. 2 for verifying
the impact of stealthy attacks on OPF. The framework includes
two models: stealthy attack model that finds attack vectors cor-
responding to stealthy topology attacks, and OPF model that
verifies whether there is an OPF solution within a threshold
cost. Since the objective is to launch a stealthy attack such that
the cost of power generation (according to the OPF solution)
increases at least a specific amount, the idea of impact analysis
is as follows: First, we look for an attack vector according to
the attack model (i.e., attack attributes). If the attack model
gives an attack vector, we update the system with respect to
the attack vector, i.e., according to the changed loads and the
modified topology. Then, we verify that whether there is an
increase in the generation cost by executing the OPF model.



TABLE I. MODELING PARAMETERS
Notation Definition
b The number of buses in the grid.
l The number of lines in the grid topology.
fi The from-bus of line i.
ei The to-bus of line i.
di The admittance of line i.
gi Whether the admittance of line i is known.
PL

i The power flow through line i.
PB

j The power consumption at bus j.
θj The state value, i.e., the voltage phase angle, at bus j.
n The number of states.
m The number of potential measurements.
ai Whether measurement i is required to be altered for the attack.
cj Whether state j is infected/affected due to false data injection.
hj Whether any measurement residing at bus j is required to be changed.
ti Whether potential measurement i is taken (i.e., reported by a meter).
ri Whether measurement i is accessible to the attacker.
si Whether the measurement is secured or not.
ui Whether line i exists in the true (real) topology.
vi Whether line i is fixed in the topology.
wi Whether the status information regarding line i is secured.
pi Whether line i is excluded from the topology by an exclusion attack.
qi Whether line i is included in the topology by an inclusion attack.
ki Whether line i is considered (though it may not exist) in the topology.

In order to verify this increase, we set the the threshold cost by
adding the expected raise with the original (i.e., in the no attack
scenario) OPF solution and check whether there is still an OPF
solution within this threshold value. If the result is no, then we
are successful to find an attack vector that causes a minimum
amount of increase in the generation cost. Otherwise, the same
process will be executed for a new attack vector until either
we find an attack vector satisfying the objective or there are no
more attack vectors. It is worth mentioning that the objective is
to increase the generation cost while ensuring convergence of
OPF considering the power generation limit of each generator
and the capacity of each transmission line. The framework
combines the topology attack model and the OPF model into
a single model, although they can be executed separately as
shown in Fig. 2.

B. Preliminaries

In order to model UFDI attack on state estimation we
use a number of notations (see Table I) to denote different
parameters, i.e., system properties and attack attributes.

Basic Power Model:
Being consistent with the DC power flow model, the

admittance of a branch (i.e., line) is computed purely from
its reactance. The direction of the line is assumed based on
the current flow direction. We denote the two end-buses of
line i using fi (from-bus) and ei (to-bus), where 1 ≤ i ≤ l,
1 ≤ fi, ei ≤ b, and b is the number of buses. The admittance
of the line is denoted by di. As, in the DC model, each state
corresponds to a bus, the number of states n is equal to b.

Each row of H corresponds to a power equation. The first l
rows correspond to the forward line power flow measurements.
The second l rows correspond to the backward line power flow
measurements, which are the same as the first l, except the
direction of the power flow is the opposite. The rest of the
rows (i.e., the last b rows) of H correspond to the bus power
consumptions. If PLi denotes the power flow through line i
and θj denotes the state value, i.e., the voltage phase angle at
bus j, we have the following relation between the line power
flow of line i and the states at the connected buses (fi and ei):

∀1≤i≤l PLi = di(θfi − θei) (7)

Equation (7) specifies that power flow PLi depends on the
difference between the connected buses’ phase angles and di,
the admittance of the line. PBj , the power consumption of a
bus j, is simply the summation of the power flows of the
lines connected to this bus. Let Lj,in and Lj,out be the sets of
incoming lines and outgoing lines of bus j, respectively. The
following equation shows the power consumption at bus j:

∀1≤j≤b PBj =
∑
i∈Lj,in

PLi −
∑

i∈Lj,out

PLi (8)

The power consumption at a bus is also equal to the load
power at this bus minus the power injected to the bus by the
generators connected to this bus. If PDj and PGj denote the
load power and generated power of bus j, respectively, the
following equation holds:

∀1≤j≤b PBj = PDj − PGj (9)

If bus j does not connected with any generator, then PGj = 0.
Similarly, if bus j does not have any load, then PDj = 0.

Note that, state estimation in DC model is the process of
finding the voltage phase angle (θ) of each bus by solving the
linear equations for all of the measurements (PLi s and PBj s)
given the line admittances (dis).

Attack Attributes:
In the DC model, two measurements can be taken (i.e.,

reported by meters) for each line: forward and backward line
power flows. For each bus, a measurement can be taken for
the power consumption at the bus. Therefore, for a power
system with l number of lines and b number of buses, there
are 2l+b (i.e., m = 2l+b) number of potential measurements
at the maximum. Though a significantly smaller number of
measurements are sufficient for state estimation, redundancy
is provided to identify and filter bad data. We define ti to
denote whether potential measurement i (1 ≤ i ≤ m) is taken.
Note that measurement i and l + i correspond to the forward
and backward power flows of line i, while measurement 2l+j
correspond to the power consumption of bus j.

In stealthy topology attacks, one or more states of the
system can be infected. We define cj to denote whether state j
is infected (i.e., changed to an incorrect value). Parameter
ai denotes whether measurement i (1 ≤ i ≤ m) is required
to be altered (by injecting false data) for the attack. If any
measurement at bus j is required to be changed, bj becomes
true. The attacker may not be able to alter a measurement due
to inaccessibility or existing security measures. We define ri to
denote whether measurement i is accessible to the attacker. We
also define si to denote whether the measurement is secured
(i.e., data integrity is protected) or not. An attacker often needs
to know the admittance of the necessary transmission lines in
order to inject the false data at the right amount, so that the
attacker can remain undetected. We use bd i to denote whether
the attacker knows the admittance of line i.

The topology of a power grid represents the connectivity
among the grid buses. An attacker can inject false data in
the topology information sent by various circuit breakers and
switches in order to change the topology. Changes in the
topology that we assume in this work include: (i) exclusion
of a (closed) line from the topology (exclusion attack), and
(ii) inclusion of a open line in the topology (inclusion attack).



Here, we also assume that the adversary can coordinate a
topology error with other measurements to render the attack
undetected. Therefore, a UFDI attack can be performed by
leveraging the modified topology. However, there are different
properties to be considered. Some of the lines in the topology
are fixed (i.e., they are never opened), which form the core part
of the topology. The statuses of some lines might be secured,
i.e., their topology is always faithfully represented in the
topology processor. Parameter ui denotes whether line i exists
in the true or real topology, while vi and wi denote whether
the line is fixed and the associated line status is secured,
respectively. In order to denote exclusion and inclusion attack,
we use pi and qi, respectively. Finally, ki represents whether
line i is considered (i.e., mapped) in the topology.

C. Topology Poisoning Attacks without Infecting States

In this work, we consider two kinds of topology poisoning
attacks to assess impact on OPF. In the first kind, the attacker
only changes the topology while the states remain unchanged.
In the second kind, the attacker changes the topology and the
states. In this subsection, we discuss the first type.

Change in Topology:
In the case of an inclusion attack, the status information

associated to an open line is compromised such a way that the
topology processor considers the line as closed. Conversely,
a closed line in service is omitted in an exclusion attack.
Therefore, a line is mapped to the topology if the following
condition holds:

∀1≤i≤l ki → (ui ∧ ¬pi) ∨ (¬ui ∧ qi) (10)

A line can be excluded from the topology only if the line
exists in the real (or true) topology and it is not a fixed line and
its status information is not secured. Similarly, a line can be
included in the topology if the line is not in the true topology
and its status information is not secured. These conditions are
formalized as follows:

∀1≤i≤l pi → ui ∧ ¬vi ∧ ¬wi (11)

∀1≤i≤l qi → ¬ui ∧ ¬wi (12)

In order to keep such an inclusion or exclusion attack (i.e.,
an introduced topology error) undetected, it is necessary to
alter certain measurements in necessary amounts. If a closed
line is excluded from the topology, the corresponding line
power flow measurement must be zero. As the states remain the
same after the topology change, the corresponding connected
buses’ power consumption measurements need to be adjusted
accordingly. Let ∆P̄Li be the change amount in the power flow
measurement of line i in the case of a topology change. Then,
the following constraint holds in the case of a exclusion attack:

∀1≤i≤l pi → (∆PLi = −PLi ) (13)

On the other hand, when a open line is included in the
topology, there should be a non-zero power flow through the
line according to the phase difference between the connected
buses. Therefore:

∀1≤i≤l qi → (∆PLi = PLi ) (14)

If no exclusion or inclusion attack is done on line i, no
change is required in line i’s power flow exclusively for the
topology change:

∀1≤i≤l ¬(pi ∨ qi)→ (∆PLi = 0) (15)

According to Equation (8), the change in the measurement
of the power consumption (∆PBj ) at bus j depends on the
changes done in the power flow measurements of the lines
incident to this bus. Therefore:

∀1≤j≤b ∆PBj =
∑
i∈Lj,in

∆PLi −
∑

i∈Lj,out

∆PLi (16)

False Data Injection to Measurements:
When ∆PLi 6= 0, it specifies that measurements i and l + i

corresponding to line i, if they are taken (i.e., ti and tl+i), are
required to be changed by ∆PLi amount. Similarly, the power
consumption measurement at bus j is required to change when
∆PBj 6= 0 and it is taken. These are formalized as follows:

∀1≤i≤l (∆PLi 6= 0)→ (ti → ai) ∧ (tl+i → al+i)

∀1≤j≤b (∆PBj 6= 0)→ (t2l+j → a2l+j)
(17)

Conversely, measurement i is altered, if and only if it is
taken and corresponding power measurement is changed. The
constraint is formalized as follows:

∀1≤i≤l ai → ti ∧ (∆PLi 6= 0)

∀1≤i≤l al+i → tl+i ∧ (∆PLi 6= 0)

∀1≤j≤b a2l+j → t2l+j ∧ (∆PBj 6= 0)

(18)

Now, if line power flow measurement i (or l + i) needs
to change, according to Equations (13) and (14), we need to
know PLi . In the case of exclusion attack, PLi already exists
(i.e., the actual measurement) and the attacker must have the
access to it. In the case of exclusion attack, PLi needs to
be estimated based on the difference between the states (θjs)
of the connecting buses. In order to approximate the states,
the attacker needs to perform some sort of state estimation
according to Equation (7) with respect to the power flow
measurements taken at the connecting buses.

If the admittance of a line is unknown, the attacker cannot
determine the necessary changes to make in the power flow
measurements of the line (especially in the case of an line
inclusion attack). We formalize this condition as follows:

∀1≤i≤l (∆PLi 6= 0)→ ((ti ∨ tl+i)→ gi) (19)

In order to inject false data to a measurement, the attacker
must have the ability, with respect to the physical or remote
access. If a measurement is secured (i.e., data integrity pro-
tected), then though the attacker may have the accessibility to
the measurement, the false data injection will not be successful.
Hence, the attacker will only be able to change measurement
i in order to attack, if the following condition holds:

∀1≤i≤m ai → ri ∧ ¬si (20)

Due to limited resources, an attacker can only access or
compromise a limited number of substations (i.e., buses) at
a particular time. A substation is required to be accessed or



compromised if a measurement residing at that substation is
required to be altered. Therefore:

∀1≤i≤l ai → hfi
∀1≤i≤l al+i → hei
∀1≤j≤b a2l+j → hj

(21)

Let TB be the maximum number of substations that an
attacker can compromise. Then:∑

1≤j≤b

hj ≤ TB (22)

D. Topology Poisoning Attacks including Infecting States

In this case, the attacker strengthens the topology poisoning
attacks incorporating the typical UFDI attacks on states. The
formalization is the same as the previous subsection, except
the additional formalization of UFDI attacks.

Change in State Estimation:
From Equation (7), it is obvious that a change of PLi is

required based on the changes on state fi (θfi ) and/or state ei
(θei ) or the vice versa. That is:

∆P̄
L
i = di(∆θfi −∆θei) (23)

If ∆θfi 6= 0 (or ∆θei 6= 0), then it is obvious that state fi (or
ei) is changed (i.e., infected). However, if both of the states
are changed in the same amount, ∆P̄

L
i is still zero.

This above relation for line i only holds if the line is
considered in the topology (Equation 10). We formalize this
constraint as follows.

∀1≤i≤l ki → (∆P̄
L
i = di(∆θfi −∆θei)) (24)

On the other side, if the line is not considered in the topology,
there should be no measurement change for launching UFDI
attacks:

∀1≤i≤l ¬ki → (∆P̄Li = 0) (25)

Now, when the voltage phase angle at bus j is changed,
state j is changed (and the vice versa). That is:

∀1≤j≤n cj → (∆θj 6= 0) (26)

False Data Injection to Measurements:
As we consider the changes in the states (i.e., UFDI

attacks), the change for a power flow measurement is the
summation of individual changes that are required for the
topology change and the state change. Let ∆P ′

L
i be the total

change done on the power flow of line i. Then,
∀1≤i≤l ∆P ′

L
i = ∆PLi + ∆P̄Li (27)

Therefore, the total change in the measurement of the
power consumption (∆P ′Bj ) will be:

∀1≤j≤b ∆P ′
B
j =

∑
i∈Lj,in

∆P ′
L
i −

∑
i∈Lj,out

∆P ′
L
i (28)

Now, the false data injection to a measurement is required
with respect to ∆P ′

L
i or ∆P ′

B
j . That is, Equation (17) turns

into the following form:
∀1≤i≤l (∆P ′

L
i 6= 0)→ (ti → ai) ∧ (tl+i → al+i)

∀1≤j≤b (∆P ′
B
j 6= 0)→ (t2l+j → a2l+j)

(29)

Equations (18) and (19) need the similar change.

E. Impact of UFDI Attacks on OPF

In order to model the impact of stealthy attacks on OPF, we
first model the OPF process as a problem of verifying whether
there is a OPF solution within a threshold cost.

Optimal Power Flow:
The objective of the OPF is to optimally control the

generation according to the load requirement. Let P̂Gj be the
changed power generated by the generator connected at j after
considering the state estimation result. The main constraint for
OPF is that the total generation must be equal to the total
expected load. Therefore:∑

1≤j≤b

P̂Gj =
∑

1≤j≤b

P̂Dj (30)

Each generator has lower and upper bounds on power
production. If P̂Gj,max and P̂Gj,min denote the maximum and
minimum generation limits of the generator at bus j, then this
constraint is formalized as follows:

∀1≤j≤b P̂Gj,min ≤ P̂Gj ≤ P̂Gj,max (31)

Recall from Equation (4) (Section II) that the OPF con-
siders the entire set of power-flow equations as constraints. In
the case of OPF, let θ̂, P̂Li , and P̂Bj be the state of bus j,
the power flow on line i and the power consumption at bus j,
respectively. Then, in the case of a power flow measurement,
the following equation, similar to Equation (7) must hold, if
and only if the line is considered in the topology:

∀1≤i≤l ki → (P̂Li = di(θ̂fi − θ̂ei)) (32)

Similarly, the following equations, similar to Equations (8),
and (9), must hold:

∀1≤j≤b P̂Bj =
∑
i∈Lj,in

P̂Li −
∑

i∈Lj,out

P̂Li

∀1≤j≤b P̂Bj = P̂Dj − P̂Gj
(33)

Each line has a capacity for the power flow, i.e., the
maximum power that can flow through that line. Let PLi,max
be the upper bound for the line capacity. Therefore:

∀1≤i≤l P̂Li ≤ PLi,max (34)

Let Cj(.) denote the cost function for the generator con-
nected at bus j, which takes the total generated power as
the parameter and returns the total cost to generate that
power. Usually, Cj(.) is a strictly increasing convex function.
Many electric utilities prefer to represent their generator cost
functions as piecewise linear equations, i.e., single or multiple
segment linear cost functions [11]. Considering the viability
of modeling the cost function, we consider the latter form for
cost functions, given by Cj(P̂Gj ) = α + βP̂Gj , where α and
β represent the cost-coefficients for that particular generator.
In OPF, the objective is to minimize the total generation cost
based on expected or estimated loads at different buses. With
the loss of generality, we model this objective as the constraint
that the cost must be less than a limit, TOPF . This constraint is
sufficient to understand the minimum impact of a UFDI attack.
The constraint is formalized as follows:



∑
1≤j≤b

Cj(P̂Gj ) ≤ TOPF (35)

We use notation OPF to denote the conjunction of the
OPF constraints, as we have described above, which we will
use below to formalize the impact of stealthy attacks on OPF.

Change in Loads due to Stealthy Attacks:
In the case of a stealthy topology attack without infecting

the states (refer to Section III-C), if ∆PBj 6= 0, according to
Equation (9), it specifies that there is a load and/or generation
power change at the bus. In this work, we assume that a
change in the measurement of a bus power consumption
specifies a change exclusively in the load, which leads to
∆PGj = 0. Because, the measurement of the power generated
by a generator, i.e., the power injected to the bus by a generator
is pretty much well-defined, which is changed only if the grid
operator finds that necessary. Typically, after the estimation of
states, if any load change is found, the optimal power flow
process (along with contingency analysis) is run, the result of
which shows whether (and which) change in the generation is
required for optimal efficiency. Therefore, the change in the
power consumption of a bus specifies the change in the load
at that bus. The following equation denotes this:

∀1≤j≤b ∆PDj = ∆PBj

Let P̂Dj be the estimated load (according to the result of
state estimation) at bus j, which is also the input to the OPF
model. Therefore:

∀1≤j≤b P̂Dj = PDj + ∆PDj

Similarly, in the case of a stealthy topology attack that infects
the states as well (refer to Section III-D), P̂Dj is estimated
from ∆P ′

B
j .

At a particular bus j, there is usually an expected bound for
the load. If P̂Dj,max and P̂Dj,min are the maximum and minimum
loads at bus j, the following constraint holds:

∀1≤j≤b P̂Dj,min ≤ P̂Dj ≤ P̂Dj,max (36)

Attack Target- Impact on OPF:
In order to define the increase in the generation cost (i.e.,

the increase of TOPF in the OPF model), let TOPF be the
optimal cost of generation in the normal (i.e., attack-free)
situation. Now, if the attacker’s objective is to increase the
cost by I% of the optimal cost, then TOPF = TOPF I/100.
Therefore, the constraint to impose the desired impact by
launching a UFDI attack is formalized as follows:

(TOPF = TOPF I/100)→ ¬ (∃P̂G
1 ,P̂

G
2 ,··· ,P̂G

b
OPF ) (37)

The above constraint states that there is no possible allocation
of generation that can cost less than TOPF .

In addition, since the attacker’s goal is not to fail the
OPF solution to converge (possible when the line capacity
constraints fail), it needs to ensure that there are OPF solutions
for larger values:

(TOPF >> TOPF I/100)→ OPF (38)

Fig. 3. A 5-bus test system topology. Bus numbers are in circles and line
numbers are in squares.

F. Implementation

We encode the system configuration and the constraints
into SMT [15]. We write a program leveraging the Z3 .Net
API [8] for encoding the formalization of our proposed false
data injection model. We encode our formalizations mainly
using Boolean (i.e., for logical constraints) and real (e.g., for
the relation between power flows or consumptions with states)
terms. The system configurations and the constraints are given
in a text file (input file). By executing the model (in Z3), we
obtain the verification result as either satisfiable (sat) or unsat-
isfiable (unsat). If the result is unsat, it means that the problem
has no attack vector that satisfies the constraints. In the case
of sat, we get the attack vector from the assignments of the
variables, ais, which represent the measurements required to
alter for the attack. The results corresponding to our model are
also printed in a text file (output file).

G. Example Case Studies

Here, we present two example case studies: first with the
stealthy topology attacks without infecting the states, while
second with the stealthy topology attacks including infecting
the states. In these examples, we consider a 5-bus sub-system
as shown in Fig. 3.

Case Study 1:
The complete input regarding the example is shown in

Table II. The line information includes a set of data for each
line: line number, end buses (from-bus and to-bus) of the
line, a value indicating the line admittance, the line capacity
(i.e., the maximum possible power flow through this line), the
knowledge status (i.e., the line admittance of a line is known to
the attacker), and the line status properties. There are four line
status properties: (i) whether this line is included in the true
topology, (ii) whether its existence is fixed in the topology,
(iii) whether the topology information regarding this line is
secured, and (iv) whether the attacker has the ability to alter
the data. According to the input, all of the 7 lines are included
in the true topology, while lines 5 and 6 are not included in
the core topology (i.e., these lines can be kept open in some
situations). The topology mapping information regarding lines
1, 2, and 6 are not secured, while the attacker has the capability
to change the topology information regarding all of the lines,
except 1 and 2.

Since the example bus system has 5 buses and 7 lines,
the maximum number of potential measurements is (5 + 2×7)



TABLE II. INPUT OF THE EXAMPLE AT CASE STUDY 1

# Topology (Line) Information
# (line no, from bus, to bus, admittance, line capacity, knowledge?, in true
topology?, in core?, secured?, can alter?)
1 1 2 16.90 0.15 1 1 1 0 0
2 1 5 4.48 0.15 1 1 1 0 0
3 2 3 5.05 0.05 1 1 1 1 1
4 2 4 5.67 0.20 1 1 1 1 1
5 2 5 5.75 0.10 1 1 0 1 1
6 3 4 5.85 0.20 1 1 0 0 1
7 4 5 23.75 0.15 1 1 1 1 1

# Measurement Information
# (measurement no, measurement taken?, secured?, can attacker alter?)
1 1 1 0
2 1 1 0
3 1 1 0
4 0 1 0
5 1 1 0
6 1 0 1
7 1 0 1
8 0 1 0
9 0 1 0
10 1 0 1
11 0 0 0
12 1 1 1
13 1 0 1
14 1 1 1
15 1 1 0
16 1 1 0
17 1 0 1
18 1 0 1
19 1 1 1

# Attacker’s Resource Limitation (measurements, buses)
8 3

# Bus Types (bus no, is generator?, is load?)
1 1 0
2 1 1
3 1 1
4 0 1
5 0 1

# Generator Information (bus no, max generation, min generation, cost coefficient)
1 0.80 0.10 60 1800
2 0.60 0.10 50 2200
3 0.50 0.10 60 1200

# Load Information (bus no, existing load, max load, min load)
2 0.21 0.30 0.10
3 0.24 0.25 0.15
4 0.18 0.30 0.10
5 0.20 0.25 0.10

# Cost Constraint, Minimum Cost Increase by Attack (in percentage)
1580 3

or 19. Each row of the measurement information includes (i)
whether the measurement is taken for state estimation (All of
the potential measurements are taken except measurements 4,
8, 9, and 11), (ii) whether the measurement is secured (all
measurements taken at buses 1, 2, and 5 are secured) and (iii)
whether the attacker has the accessibility to alter the measure-
ment (the attacker has the accessibility to alter measurements
6, 7, 10, 12, 13, 14, 17, 18, and 19). The information about the
buses in terms of load and generation is shown in the table.
The generation capability, i.e., the maximum and minimum
generation, of the generators corresponding to the buses are
given. We assume that a generation bus only has a single
generator connected. The generation cost of power is followed
from the simple linear function as shown in Section III-E. The
values of coefficient α and β for each generator are given
in the input. Note that these coefficients are taken arbitrarily,
which do not correspond to the real costs. The total load of
the system is 0.83 per unit, i.e., 83 MW (considering a 100
MVA base) and the individual loads at the buses are 0, 0.21,
0.24, 0.18, and 0.20, respectively in order. The cost constraint
in the attack-free condition is $1520 (i.e., there is a satisfied
OPF solution in this cost).

In this example, the attacker’s objective is to launch a
stealthy topology attack without infecting the states (refer to
Section III-C), such that he can create at least 3% of increase
in the generation cost. In this example, the attacker’s resource
limitation limits alteration of utmost 8 measurements at a time,
distributed in no more than 3 buses. The execution of the
model corresponding to this example returns sat along with
the assignments to different variables of the model. From the
assignments, we find that:

• An exclusion attack on the topology is launched, such
that line 6 is unmapped in the topology.

• In order to keep this attack undetected, measurements 6,
13, 17, and 18 need to be altered only. These measure-
ments are distributed in buses 3 and 4.

The increase in the generation cost is almost $1650 which
is around 4% more than the optimal value in the case of actual
(i.e., without attack) scenario. Note that in this scenario, i.e.,
according to the given constraints, the attacker cannot launch
a UFDI attack to any state. Hence, it has been interesting to
see from this example that still the attacker has succeeded in
increasing the cost of generation by launching an exclusion
attack on the topology mapping without changing any state of
the system.

Case Study 2:
The input of the example 2 is shown in Table III. The

line information is the same as the previous example. The
measurement related input shows that all of the potential
measurements are taken. The measurements taken at bus 1
(i.e., measurements 1, 2, and 15) are secured. The attacker has
the accessibility to alter all measurements except 1, 2, and 15.
The input about the generation and load buses is the same as
the previous case study.

In this example, the attacker’s objective is launch a stealthy
topology poisoning attack including UFDI attacks (refer to
Section III-D), to induce at least a 6% increase in the
generation cost based on the base-case OPF solution. The
attacker’s resource limitation limits alteration to at most 12
measurements at a time, while these measurements can be
distributed in no more than 3 substations (i.e., buses). The
execution of the model corresponding to this example returns
sat along with the assignments to different variables of the
model. From the execution of our formalizations according to
this example, we find a satisfiable solution. According to this
solution, we see the following results:

• An exclusion attack on the topology needs to be launched,
so that line 6 is unmapped in the topology.

• It is also required to execute UFDI attack on state 3.
• In order to keep this attack undetected, it is required

to alter measurements 3, 6, 10, 13, 16, and 18. These
measurements are distributed in buses 2, 3, and 4.

• From the assignments, we also see that by attacking the
states, the loads of buses 3 and 5 are changed from 0.21
and 0.18 unit to 0.29 and 0.1 unit, respectively.

Note that, in this example scenario, the actual increase in
the cost is almost 7% and we cannot increase the cost more
than 8% (i.e., if the objective is to at least 9% increase more
than the base-cost, then there is no solution in this scenario).
Most interestingly, without topology attacks, UFDI attacks



TABLE III. INPUT OF THE EXAMPLE IN CASE STUDY 2

# Topology (Line) Information
# (line no, from bus, to bus, admittance, line capacity, knowledge?, in true
topology?, in core?, secured?, can alter?)
1 1 2 16.90 0.15 1 1 1 0 0
2 1 5 4.48 0.15 1 1 1 0 0
3 2 3 5.05 0.05 1 1 1 1 1
4 2 4 5.67 0.20 1 1 1 1 1
5 2 5 5.75 0.10 1 1 0 1 1
6 3 4 5.85 0.20 1 1 0 0 1
7 4 5 23.75 0.15 1 1 1 1 1

# Measurement Information
# (measurement no, measurement taken?, secured?, can attacker alter?)
1 1 1 0
2 1 1 0
3 1 0 1
4 1 0 1
5 1 0 1
6 1 0 1
7 1 0 1
8 1 0 1
9 1 0 1
10 1 0 1
11 1 0 1
12 1 0 1
13 1 0 1
14 1 0 1
15 1 1 0
16 1 0 1
17 1 0 1
18 1 0 1
19 1 0 1

# Attacker’s Resource Limitation (measurements, buses)
12 3

# Bus Types (bus no, is generator?, is load?)
1 1 0
2 1 1
3 1 1
4 0 1
5 0 1

# Generator Information (bus no, max generation, min generation, cost coefficient)
1 0.80 0.10 60 1800
2 0.60 0.10 50 2200
3 0.50 0.10 60 1200

# Load Information (bus no, existing load, max load, min load)
2 0.21 0.30 0.10
3 0.24 0.25 0.15
4 0.18 0.30 0.10
5 0.20 0.25 0.10

# Cost Constraint, Minimum Cost Increase by Attack (in percentage)
1580 6

alone cannot satisfy the attack objective. In that case (e.g.,
when all the line statuses are either secured or fixed), the
maximum increase in the generation cost is less than 3%.

IV. EVALUATION

In this section, we present the results of the scalability
evaluation of our proposed model.

A. Methodology
We evaluate the scalability of our proposed framework

model by analyzing the time and memory requirements for
executing the model in different problem sizes. Problem size
depends mainly on the number of buses. We evaluate the
scalability of our model based on different sizes of IEEE test
systems, i.e., 14-bus, 30-bus, 57-bus, and 118-bus [16] (along
with our 5-bus test-case system), where we consider 5, 6, 7,
and 23 generators, respectively. We take a linear segment based
cost function as we have illustrated in Section III-E. We run our
experiments on an Intel Core i5 Processor with 4 GB memory.
The proposed model is coded using Z3 Managed API and
executed using the Z3 SMT solver [8].

Ideas to Improve the Scalability of Impact Analysis: As
we are considering real values, there is usually a very large
number of stealthy topology attack vectors possible in an attack
scenario, especially when we consider infecting the states as
well. We observed that finding the impact on OPF considering
such a large number of attack vectors become very costly (even
intractable) when the number of buses becomes large (more
than 14). In order to keep the computation cost tractable, we
enhance the proposed framework with the following ideas:

• The intuition behind this mechanism is as follows:
Though there can be a larger number of attack vectors,
many attack vectors are very close to each other, i.e.,
the difference between them is very insignificant with
respect to the potential impact on OPF. Therefore, it is
enough to consider one of these similar attack vectors
to see the impact for each of them. According to this
idea, the number of attack vectors considered for finding
the impact becomes limited, which leads to a reduced
execution time. In our experiments, we take the precision
of 2 digits to consider two attack vectors as the same one.

• The typical OPF model, as we have presented in Sec-
tion III-E, takes a very long time for 57, 118 or larger
bus systems, which makes the impact verification often
infeasible. In order to reduce the OPF model execution
time, we adopt the idea of using generation-to-load distri-
bution factors for calculating the line power flows in the
OPF model [4], [17]. The use of shift factors alone cannot
replaces the voltage phase angle based line power flow
calculation as in Equation (32), because it is conditioned
with the existence of the line in the topology. Therefore,
we use the line outage or line closure distribution factors
(LODF/LCDF) to work with any line exclusion or inclu-
sion attacks [18]. However, since these LODF/LCDF are
usually calculated for single line breakage or closure, in
our evaluations, we only consider single line inclusion or
exclusion based topology attacks.

B. Evaluation of Time Complexity

Fig. 4(a) and Fig. 4(b) show the execution times of the
proposed model, i.e., with and without infecting the states,
respectively, of analyzing the impact of UFDI attacks on the
OPF solution. The graphs show the impact of the problem size
on the execution time. We vary the problem size by considering
different IEEE test systems. At each problem size, we perform
three experiments taking different random scenarios, especially
in terms of the attacker’s resource limitation. We consider a
1-2% of increase in the generation cost. The execution time
of each of these experiments is shown using a bar chart. A
graph is also drawn using the average execution time for each
bus system. We see that, with respect to the bus size, the
increase in the execution time follows almost the quadratic
order. The execution time of an SMT model depends on the
number of variables and the complexity of the theories applied
in the model. The number of variables increases with the
problem size, particularly in this model due to the number of
generators and lines. However, we observe that the execution
time is much higher in the scenario when infection to the
states are also performed (Fig. 4(b)). Because, it is possible to
launch multiple attacks on one or more states with respect to a
single topology (i.e., line inclusion or exclusion) attack, which
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Fig. 4. The execution time of Impact verification on OPF with respect to the number of buses in (a) topology attacks without infecting states, (b) topology
attacks including infecting states, and (c) unsatisfiable cases.
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Fig. 5. These graphs shows the model execution time of individual models with respect to the problem size: (a) the OPF model, (b) the topology attack model,
and (c) both of the individual models in the unsatisfiable cases.

increases the attack space, i.e., search space, significantly. It
is worth mentioning that due to this larger attack space, the
second scenario can make larger (and various) impact on OPF
compared to the first.

Fig. 4(c) shows the execution time in the unsatisfiable
cases. If we compare the graphs in this figure with those in
Fig. 4(a) and Fig. 4(b), we can see that the execution time
in unsatisfiable cases is higher than the time in the satisfiable
cases. The reason is obvious, i.e., , the SMT solver requires
verifying of all the potential attack vectors to conclude that
there is no attack that can create the desired impact.

In our proposed model for analyzing the impact of stealthy
topology attacks on the OPF solution, we have two main
parts: (i) OPF model, and (ii) topology attack verification
(or generation) model. In order to understand their individual
effects on the time complexity, we also evaluate them in
isolation. The execution time of the OPF model is shown in
Fig. 5(a) with respect to the problem size (i.e., the number
of buses), where we observe that the execution time depends
on the tightness of the (cost) constraint. The more close is
the cost constraint to the optimal, the larger time is required
to get a solution, because the solver needs to search more
as the potential satisfiable solutions becomes smaller. The
execution time of the topology attack model is shown Fig. 5(b)
in three arbitrary cases (with respect to the attacker’s resource
limitation) for each bus system. Here, we observe that the time
increases almost linearly with respect to the problem size.
From these two figures, we can see that the execution time
is much larger in the case of OPF model compared to that
of the topology attack model. We also see that the increase
in the time is linear for each individual model, although their
combined effect is almost quadratic. Because, in simple words,
the combined model needs to run these two individual models

TABLE IV. REQUIREMENT OF THE MEMORY (IN MB) BY THE SOLVER

# of Buses Topology Attack Model (in MB) OPF Model (in MB)
5 0.90 1.55
14 1.60 2.85
30 3.10 5.10
57 5.90 10.15
118 12.20 22.35

many times until an attack vector is found with the desired
impact. In Fig. 5(c), we present the execution time in the
unsatisfiable cases for both of the OPF model and the topology
attack model. The figure shows that the execution time in the
unsatisfiable cases is often larger than that in the satisfiable
cases. The reason is the same as we have discussed in the last
paragraph, i.e., the solver needs to go through the whole search
space to conclude with the unsatisfiable result.

C. Evaluation of Memory Complexity
The memory requirements of the SMT solver [8] for

executing our individual models are evaluated in different
IEEE test systems. The memory requirement for the execution
of an SMT model depends mainly on the number of variables
defined in the model and the number of intermediate variables
generated by the solver to implement the satisfiability modulo
theories used in the model. We show the memory requirements
for the topology attack model (with infecting the states) and
OPF model, individually, in Table IV. We can see that the
memory requirement of our models increases almost linearly
with the increase in the number of buses.

V. RELATED WORK

We restrict our discussion to cyber-attacks which have
mainly focused on state estimation. The idea of stealthy
attacks, i.e., UFDI attacks, was first reported by Liu et al.
in [3]. The work in [19], extends the scope of UFDI attacks
considering an adversary’s limited access to meters, limited re-
sources to compromise meters, with specific or random goals,



under assumptions that adversaries have perfect knowledge,
i.e., complete information about the grid. In general, computing
the attack is an NP-complete problem and hence, the authors
considered heuristics. Vukovic et al. proposed security metrics
to quantify the importance of individual buses and the cost of
attacking individual measurements accounting for communi-
cation vulnerabilities [13]. Bobba et al., in [6], showed that
protecting a set of measurements that ensure observability is
a necessary and sufficient condition to detect UFDI attacks.
Kim and Poor in [7] proposed a greedy suboptimal algorithm
to determine measurement subset that can be made immune
from false data injection for the protection against UFDI
attacksin. Kin Sou et al. in [20] show that an l1 relaxation-
based technique can provide an exact solution of the data
attack construction problem. The works in [9], [14] consider
UFDI attacks with incomplete or partial information. Very
recently, in [21] Kim and Tong presented algebraic conditions
of undetected topology attacks in power grids. However, all
of these prior works focused on the attacks against state
estimation from an individual attack stand point. In our recent
works, we have addressed the problem of verifying stealthy
attacks on state estimation by providing a comprehensive
model of the attack attributes. In [10] we have presented a
formal framework for verifying typical UFDI attacks, while
in [22] we have introduced stealthy attacks with the novel
idea of strengthening UFDI attacks by incorporating topology
poisoning. In addition, in [22], we have devised a security
architecture synthesis mechanism with respect to a given attack
model and the grid operator’s resource constraints.

Being motivated from the success of providing formal
models for verifying stealthy attacks in our previous works,
we have proposed a formal mechanism of verifying the impact
of typical UFDI attacks on the OPF module first in [23]. In
contrast, this paper shows how topology poisoning attacks can
mount subtle attacks on the OPF module by changing the
topology (plus states). While it appears intuitive that an attack
on the state estimator can compromise the OPF, we provide a
systematic modeling framework to analyze such cyber-attacks.

VI. CONCLUSION

In this work, we have shown that topology poisoning
attacks (i.e., deliberate introduction of topology errors) can in-
duce vulnerabilities to the Optimal Power Flow (OPF) module.
We have further shown that topology poisoning attacks being
combined with stealthy attacks on state estimation can create
stronger impact on OPF. We have proposed a verification based
formal framework solved with an SMT solver that allows us
to model attributes of such an attack, analyze its feasibility,
and quantify consequences in terms of increases in overall
generation costs. We have demonstrated the framework on a
small illustrative 5 bus test system. For the test system, we
have determined attack configurations that increase cost of
operation at least 6%, compared to the attack-free scenario. We
have also evaluated the scalability of the proposed framework
on the IEEE test systems. Our framework would be useful in
systematically identifying and analyzing cyber-vulnerabilities,
thus assist in developing suitable defense strategies. In future,
we would like to investigate the impact of stealthy attacks on
the power system’s security.
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