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Abstract—Unmanned aerial vehicles (UAVs) are widely utilized
in myriad domains due to their low infrastructure cost and flexi-
bility in deployment. Hostile and unsafe networking environments
can make UAVs vulnerable to various attacks. Intrusion detection
systems (IDSs) have been developed to detect such attacks.
However, conventional data-driven IDSs can be architecturally
complex and computationally intensive for resource-constrained
small UAVs. In this work, we propose a lightweight IDS for UAVs
leveraging an adaptive neuro-fuzzy inference system (ANFIS)
that combines artificial neural networks (ANNs) and fuzzy
deduction frameworks. Due to the simplistic membership and
rule-based classification capabilities of ANFIS, our proposed IDS
is lightweight and perfectly suitable for small UAVs. We evaluate
the ANFIS-IDS’s effectiveness by comparing its performance to
conventional data-driven classification models. In particular, we
contrast the proposed IDS with a traditional novelty-based IDS
for UAV sensor attacks. We further compare their deployment
in a hardware-emulated UAV testbed, assessing the proposed
model’s lightweight nature.

Index Terms—Fuzzy Inference, Membership function, ANN,
ANFIS, Intrusion detection system

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have been demonstrated
to be a prominent tool for various applications, including
monitoring of industrial control systems, law enforcement,
military operations, etc. [1]–[7]. However, some of these ap-
plication domains are potentially insecure from a networking
perspective, leaving UAVs vulnerable to various attacks. To
ensure reliable and trustworthy information transfer between
network components, it is necessary to protect these devices
against intrusion attempts [8]. Intrusion detection systems
(IDSs) have been developed to detect various kinds of attacks
in networked UAV control [9], [10].

The majority of anomaly detection techniques currently
used in the UAV industry are predictive models that analyze
and predict sensor readings. The most popular models include
autoregressive models, linear dynamic state space models,
and neural network-based regression models. However, the
computational complexity of these models often questions
their feasibility in the UAV domain. Fuzzy logic, on the
other hand, is much simpler and yet closely resembles hu-
man reasoning and decision-making. In applications where
the relationships between inputs and outputs are complex,
nonlinear, or difficult to model using traditional mathematical
equations, adaptive neuro-fuzzy inference system (ANFIS) has
become a very useful tool due to its nonlinear interaction

designs, variational flexibility, and rapid learning limits [11].
It is a hybrid artificial intelligence system combining the
advantages of artificial neural networks (ANNs) with fuzzy
deduction frameworks. It works by learning a set of fuzzy if-
then rules from input-output data using a training algorithm
such as backpropagation. Then, it uses these learned rules
to make predictions or decisions based on new input data.
Therefore, ANFIS has become an excellent tool for prediction
and classification problems, including cyber attack detection
in various application domains [12].

Small UAVs are edge devices with constrained resources
like processing power, memory, and battery life, which can
quickly be overwhelmed if loaded with heavyweight security
solutions [13]. Hence, for detecting intrusions in UAV net-
works, lightweight IDS, requiring minimal computational re-
sources, are essential [14]. The existing works in the literature
construct IDS for UAVs by utilizing machine learning (ML)
models, which incorporate network parameters to detect intru-
sions. However, the size of these IDS can become significantly
large, making it impractical to deploy the model in resource-
constrained small UAV domains.

In this work, we propose an ANFIS-based IDS that is
tailored for the domain of networked UAVs. The proposed
IDS is capable of detecting intrusions in the communication
channel of UAVs using simple membership functions and
logical operations that combine to generate classification rules.
Compared to the ML-based models, ANFIS-IDS provides
a lightweight solution that is ideal for small UAVs, con-
ventionally equipped with limited resources. The lightweight
nature of the proposed IDS is achieved by using a fuzzy
inference system, which provides a more straightforward and
less computationally intensive solution compared to complex
machine learning algorithms. To the best of our knowledge,
this paper is the first to propose the use of ANFIS-based
IDS for UAV networks. To evaluate the effectiveness of the
proposed ANFIS-IDS, the paper uses standard performance
metrics to compare it with conventional classification models.
The results show that the proposed IDS achieves similar or
better performance than these models, despite its lightweight
design. Furthermore, to demonstrate the practicality of the
proposed IDS, the paper deploys it in a real hardware-emulated
UAV testbed. The results of this test demonstrate the ability of
the IDS to effectively detect intrusions in UAV communication
channels while running on hardware with limited resources.



Key contributions of this work are three-fold:
• Designed and implemented an ANFIS-based IDS for

UAV communication systems that can effectively detect
GPS spoofing and jamming attacks.

• The IDS’s performance is assessed by comparing its
accuracy metrics with conventional data-driven classifi-
cation models. Additionally, its effectiveness is verified
by contrasting it with the novelty-based IDS for UAV
sensor attacks [15].

• Both the novelty-based IDS and ANFIS IDS are de-
ployed in a real hardware-emulated UAV testbed, which
is a resource-constrained environment, to evaluate the
lightweight nature of the proposed model.

The succeeding sections are arranged as follows: Required
preliminary information is briefly presented in Section II.
Section III discusses the related research works. The proposed
framework is presented in Section IV. The technical specifics
are discussed in Section V. In Section VI, the evaluation setup
is presented along with the empirical analysis and findings.
Finally, the paper is concluded with Section VII.

II. BACKGROUND

This section presents some preliminary concepts related to
the proposed IDS.

A. Intrusion Detection Systems

Intrusion detection refers to the techniques that can identify
interference and security assaults and is used in the context
of data security. The literature has presented a number of
intrusion detection systems (IDSs) that employ a variety
of algorithms and strategies in an effort to find intrusions
and anomalies [16]. The cutting-edge IDSs can be broadly
categorized into three groups: knowledge-based techniques,
model-based techniques, and data-driven techniques [17]. To
efficiently detect intrusions, the first two methods need to
comprehend the domain knowledge or system mechanism.
However, for many real-world domains, such as UAV con-
trol, it is typically difficult to develop an accurate physical
model [18]. The data-driven approaches, on the other hand,
automatically learn the behavioral model of the system based
on gathered system data. Consequently, we present a data-
driven IDS in this work.

B. ANFIS

ANFIS is a unique type of ANN that combines the prin-
ciples of fuzzy logic and neural networks to create a hybrid
system capable of performing both symbolic and numerical
computations. This powerful inference system employs IF-
THEN rules to modify a nonlinear function, which allows it
to act as an effective and ideal estimator, as demonstrated
in various studies [19], [20]. ANFIS has found success in
numerous fields, such as engineering, medicine, finance, and
robotics, among others, due to its ability to learn from data and
adapt to changing conditions, making it an excellent tool for
modeling complex systems. Utilizing given input/output data,
ANFIS can create mapping based on both human knowledge,

Fig. 1. Workflow of input-output mapping in ANFIS.

in the form of fuzzy if-then rules, and neural learning algo-
rithms [21]. The workflow of ANFIS’s input-output mapping is
presented in Fig. 1, where two set membership functions (input
and output) along with a set of logical operations (forming
rules) dictate the estimation task. One of the significant
attributes of ANFIS is its ability to represent complex relations
among the neurons of ANNs through a combination of simple
conditions. This makes ANFIS a valuable tool for applications
that require complex modeling and analysis of data.

III. RELATED WORKS

This section presents the literature review of related do-
mains. There are various fuzzy IDS techniques published in
the literature. For instance, Chandrasekhar et al. described a
method for intrusion detection [22] that first performs initial
clustering and then goes on to train the fuzzy ANN model
using radial support vector machine (SVM) classifiers and
fuzzy-ANN. The SVM vectors are then created, and the
radial SVM is used for the final classification. An instance
selection approach is suggested in Ashfaq et al. [23] to
enhance the training of data using fuzzy logic. For each
training set of data, they created a membership vector by using
the randomized weighted neural network (RWNN) as a basis
classifier. To increase the detection rate and stability of the
IDS, Lei et al. used an ANN and fuzzy sets [24]. However,
the necessary techniques for training and improving the ANN
are not specified. Karaboga et al. proposed an artificial bee
colony algorithm for ANFIS classifier training in [25]. In this
algorithm, the mechanism for producing solutions is based on
the adaptivity value that was created using the failure counter
and the crossover operator. The IDS technique proposed by
Ganeshkumar et al. [26] offers a hypervisor detector, an
IDS created to function at the hypervisor layer. It is created
using ANFIS and implemented using a hybrid strategy that
combines the least squares method and the backpropagation
gradient descent method. Sajith et al. proposed a network
IDS using an ANFIS classifier to detect and classify different
types of network intrusions [11]. The IDS outperformed other
classifiers in accuracy and detection rate using the KDD
Cup 1999 dataset. Moudni proposed a fuzzy-based IDS for
detecting black hole attacks in MANETs [27], which utilizes
the Mamdani fuzzy inference system to identify black hole
attacks based on routing information. The proposed system
was evaluated using NS-2 and demonstrated high accuracy in
detecting attacks.

None of the above-mentioned works, however, have focused
on intrusion attacks such as GPS spoofing and jamming
in UAV control networks. ANFIS-based IDS is particularly



Fig. 2. Framework of the proposed ANFIS-based IDS.

crucial for resource-constrained devices like small UAVs due
to its lightweight attribute. However, in the existing literature,
IDSs for the UAV domain are mostly based on ML mod-
els, which are usually computationally expensive [28]–[30].
Although ML-based IDSs have several advantages over tradi-
tional signature-based IDSs, their deployment often becomes
infeasible in resource-constrained UAV units. We fill up this
research gap by proposing the ANFIS-IDS for UAVs.

IV. FRAMEWORK

We introduce our proposed ANFIS-based IDS in this sec-
tion. As shown in Fig. 2, the IDS requires historical data (in-
cluding both benign and attack samples) to be trained, in order
to accurately identify and detect UAV network intrusions. This
aspect of the proposed IDS is similar to conventional ML-
based IDSs, however, the crucial difference is the final model
that is trained and deployed in the UAV hardware.

Before feeding into the IDS, the data is processed and
reduced through two sequential steps. First, the preprocessing
is done through merging different sensor data, scaling the
data, and dropping features with minimal correlation with the
target label. Then we perform principal component analysis
(PCA) [31] to further reduce the dimensionality of the feature
space. The reason behind performing PCA is to reduce the
training sample space to an order that will make sure the
IDS performs reasonably well while the underlying model
does not become too complex. We experiment with different
percentages of variance and advocate capturing 70% variance
to maintain detection accuracy. Then the final data is fed to the
IDS as input and ANFIS generates input membership functions
(IMFs) for each of the input components. Then different
logical operations are performed among the IMFs to generate
the rules that will dictate the decision of the IDS. The results
of each rule are mapped into output membership functions
(OMFs), which are aggregated to generate an output. These
three components (IMFs, Rules, OMFs) define the proposed
ANFIS-IDS, which are converted into byte code to generate
the header file of the IDS. Finally, the machine-executable
model is deployed on the microcontroller of a UAV.

V. TECHNICAL DETAILS

This section presents the technical details of the proposed
IDS model. First, the underlying fuzzy inference system

Fig. 3. Neural structure of the proposed ANFIS-based IDS.

(Takagi-Sugeno-Kang) has been discussed briefly. Then, the
structure and processing of the data are presented. Afterward,
the modeling of the ANFIS-IDS is demonstrated, followed
by the generated rules. Finally, a case study is shown for a
particular set of input patterns along with computed labels.

A. Takagi-Sugeno-Kang Fuzzy Inference System

We utilize the Takagi-Sugeno-Kang (TSK) fuzzy inference
system in our IDS model. TSK is a powerful rule-based system
that is commonly used in various fields, including information
security. In an IDS model, TSK is used to infer a fuzzy
output label based on a set of fuzzy input patterns. First,
input variables are fuzzified into fuzzy sets to determine the
membership degree of the input variables in each set. The
membership degree of an input variable in a fuzzy set indicates
the degree to which the input variable belongs to the set.
Next, fuzzy rules are applied to these fuzzy sets to generate
fuzzy output values. These rules are typically represented as
“IF-THEN” statements, where the “IF” part contains a set of
conditions, and the “THEN” part contains a set of conclusions.
Each rule corresponds to a specific decision boundary, and the
model’s parameters can be interpreted as the weights of the
decision boundary. Finally, the crisp output value is obtained
by defuzzifying the fuzzy output values. Defuzzification is the
process of converting a fuzzy output value into a crisp value.
This process involves weighing the contribution of each fuzzy
set to the overall output value.

One of the significant advantages of the TSK fuzzy infer-
ence system is its high interpretability [32]. The TSK model’s
rules are easy to understand, and each rule corresponds to a
specific decision boundary. In addition, TSK is highly accurate
and can be used efficiently for classification applications [33].
Overall, the TSK fuzzy inference system is a powerful tool
for developing IDS models. Its ability to handle uncertainty
and imprecision in data, combined with its high accuracy and
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Fig. 4. The membership function plots for (a) the first input variable and (b)
the second input variable, of the ANFIS-IDS.

interpretability, makes it a very powerful tool for intrusion
detection tasks [34].

B. Data Processing

Similar to ML models, ANFIS also gets trained on historical
data to predict/classify future unknown data. We utilized the
UAV flight dataset available at [35], which includes three types
of flight data:

• Flights with GPS spoofing: A Great Scott Gadgets
HackRF software-defined radio is used with the GPS-
SDR-SIM tool to broadcast 30.286502,120.032669.

• Flights with GPS jamming: Done by broadcasting white
gaussian noise using the HackRF, with an amplitude of
0.3 and a gain of -48dB.

• Benign Flight: No attacks attempted.

The data set available at [35] had more than 25k samples
and each sample has 1050 features, from where we dropped
the features that have very low correlation with the label. Then
the missing data is filled up with average column values.
Finally, we dropped columns having the same value for all
the samples and used the training slice of the dataset to train
five classification models (discussed later in Section VI). Then
for the ANFIS-based IDS, we performed PCA to improve
the data’s interpretability while retaining the most information
possible. We set the PCA parameters to retain 70% of the total
variance and ended up with two input features (2 principal
components). We used that data set along with the label
column to train the ANFIS model.

C. Modeling ANFIS
We utilized the Matlab Fuzzy Logic Toolbox for modeling

the ANFIS-IDS. The neural structure of the proposed TSK
network is presented in Fig. 3, where MF j

i presents the i-
th membership function of the j-th input (i.e., PCj), RK
presents the K-th rule, and MFO

i presents the i-th output
membership function. According to the processed input set,
we have two input processing elements (PEs) in the first
layer, each passing one principal component (PC). We set
three membership functions for each input value, which are
adapted through gradient updates during the training phase.
The resultant final membership function for input one and
input two are presented in Fig. 4(a) and Fig. 4(b), respectively.
We set the number of rules to nine, where each rule is a logical
combination of a pair of membership functions. The toolbox
generated the logical combinations according to the mapping
of the input features to the output label. A firing weight and
consequent value are generated at each rule according to the
input values and membership degrees.

TABLE I
RULES OF ANFIS-IDS

Rule PC1 PC2 Output
R1 Small, MF 1

1 Small, MF 2
1 Jam, min(MF 1

1,MF 2
1)

R2 Small, MF 1
1 Medium, MF 2

2 Spoof, min(MF 1
1,MF 2

2)
R3 Small, MF 1

1 Large, MF 2
3 Spoof, min(MF 1

1,MF 2
3)

R4 Medium, MF 1
2 Small, MF 2

1 Jam, min(MF 1
2,MF 2

1)
R5 Medium, MF 1

2 Medium, MF 2
2 Benign, min(MF 1

2,MF 2
2)

R6 Medium, MF 1
2 Large, MF 2

3 Spoof, min(MF 1
2,MF 2

3)
R7 Large, MF 1

3 Small, MF 2
1 Benign, min(MF 1

3,MF 2
1)

R8 Large, MF 1
3 Medium, MF 2

2 Benign, min(MF 1
3,MF 2

2)
R9 Large, MF 1

3 Large, MF 2
3 Benign, min(MF 1

3,MF 2
3)

Finally, all the consequent values from the nine rules are
aggregated according to the firing weight to generate the final
output. The final layer has only one PE, which represents the
predicted label for the given input sample. The output PE
can have three different values, representing the benign, the
GPS spoofing, and the GPS jamming signal, respectively. The
generated membership functions for inputs are as follows:
Input 1: Takes in the value of Principal Component 1 (PC1),
which ranges from -2.4537 to 2.7874.

• Small: If the value is between -2.4537 to 0.167. In
Fig. 4(a), MF 1

1 presents this membership.
• Medium: If the value is between -2.2158 to 2.7874. In

Fig. 4(a), MF 1
2 presents this membership.

• Large: If the value is between 0.167 to 2.7874. In
Fig. 4(a), MF 1

3 presents this membership.
Input 2: Takes in the value of Principal Component 2 (PC2),
which ranges from -1.5541 to 2.0288.

• Small: If the value is between -1.5541 to 0.4856. In
Fig. 4(b), MF 2

1 presents this membership.
• Medium: If the value is between -1.5541 to 2.0288. In

Fig. 4(b), MF 2
2 presents this membership.

• Large: If the value is between -0.0874 to 2.0288. In
Fig. 4(b), MF 2

3 presents this membership.
Each ANFIS-generated rule performs a logical operation

on the input values to generate an output consequent and a



Fig. 5. Rules Surface for the ANFIS-based IDS.

Fig. 6. Case study for two specific input values (0.167 and 0.237) and
corresponding output value/label (1.01).

firing weight (degree of output membership function). Table I
summarizes all nine rules.

The generated rules surface is presented in Fig. 5, where
the horizontal axis-es represent the values of the two inputs
and the vertical axis represents the variable output value.
Based on the surface figure, it is evident that there are no
three separate flat surfaces, resembling staircases, for the three
labels. Instead, we observe minor variations around the values
of 1, 2, and 3. Consequently, to determine the actual label for
a sample, we round the output value to the closest integer.

D. Case Study

We present a case study in Fig. 6 (screenshot from ANFIS
toolbox) for a particular set of input values. The PC1 and PC2
are set to 0.167 and 0.237, respectively. We observe that R5
achieves the highest firing weight since both the inputs have

Fig. 7. Experimental Methodology.

a high degree of membership in the respective membership
functions (MF 1

2,MF 2
2) of R5. Among others, R4 and R6

have very low firing weights, while the rest has negligible
weights. After aggregation, we observe the final output as
1 (after rounding the actual output of 1.01), meaning the
corresponding input sample is detected as benign.

VI. EXPERIMENTS AND DISCUSSIONS

In this section, we analyze and evaluate the proposed
ANFIS-based IDS. We first discuss the experimental setup,
including the dataset and evaluation metrics. Then we com-
pare the performance of the proposed IDS with conventional
classification models. Afterward, we contrast the detection
capability of the ANFIS-IDS with novelty-based IDS [15]
for UAVs. Finally, we validate the lightweight nature of the
proposed IDS by deploying it on a microcontroller, emulating
the hardware of a resource-constrained small UAV.

A. Experimental Setup

This section describes the methodology we employed to
evaluate the proposed IDS. To ensure a sound performance
validation, we used a consistent data set (referred in Section V)
across all the models discussed in the following subsections.
Fig. 7 provides an overview of the experimental methodology.

1) Data Split and Training: The data was split into two
sets: training and testing. The training set consisted of ap-
proximately 16.5k data samples, while the testing set included
over 8k data samples. We trained the model for 100 itera-
tions, and the training loss for each iteration is illustrated in
Fig. 8(a). We observe that the training loss converges after
approximately 60th iteration. Following the completion of
training, we evaluated the prediction accuracy of the trained
IDS with the test data. Fig. 8(b) presents the overall testing
prediction performance via a confusion matrix. It is evident
from the confusion matrix is that false negative rate is low,
i.e., the proportion of labeling a attack sample as a benign
sample is little. Conversely, false positive rate is relatively
higher, which is acceptable, since it will not cause any havoc
from the security perspective. A more detailed analysis of the
performance is provided in the subsequent sections.

2) Evaluation Metrics: We evaluate the performance of the
proposed ANFIS-IDS in terms of the following classification
metrics:
Accuracy: It is a measure that indicates how well a model
predicts the correct class or label for a given set of obser-
vations. It is calculated by dividing the number of correctly



TABLE II
PERFORMANCE COMPARISON OF CONVENTIONAL CLASSIFICATION MODELS WITH PROPOSED ANFIS-IDS.

Model Label Accuracy Precision Recall Specificity F1 Score

Decision Tree Classifier
Benign 0.75 0.857143 0.75 0.924242 0.80021

GPS Jamming 0.777778 0.777778 0.777778 0.885714 0.777778
GPS Spoofing 0.833333 0.714286 0.833333 0.868421 0.769231

Gaussian NB
Benign 0.60031 0.80021 0.60042 0.909091 0.685714

GPS Jamming 0.777778 0.875 0.777778 0.942857 0.823529
GPS Spoofing 0.866667 0.590909 0.866667 0.763158 0.702703

Logistic Regression
Benign 0.625 0.806452 0.625 0.888889 0.704225

GPS Jamming 0.666667 0.705882 0.666667 0.827586 0.685714
GPS Spoofing 0.666667 0.413793 0.666667 0.776316 0.510638

Linear Discriminant Analysis
Benign 0.675 0.818182 0.675 0.90625 0.739726

GPS Jamming 0.722222 0.722222 0.722222 0.852941 0.722222
GPS Spoofing 0.785714 0.628571 0.785714 0.828947 0.698413

SVC
Benign 0.65 0.8125 0.65 0.903226 0.722222

GPS Jamming 0.666667 0.666667 0.666667 0.818182 0.666667
GPS Spoofing 0.846154 0.647059 0.846154 0.842105 0.733333

TSK (ANFIS-IDS)
Benign 0.735 0.830508 0.735 0.925 0.779841

GPS Jamming 0.85 0.858586 0.85 0.93 0.854271
GPS Spoofing 0.875 0.777778 0.875 0.875 0.823529
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Fig. 8. Training and testing of proposed ANFIS-IDS: (a) Training loss, and
(b) Confusion matrix of testing patterns.

predicted observations by the total number of observations in
the dataset.

Precision: It is a performance metric that measures the accu-

racy of positive predictions made by a model. It calculates the
ratio of true positive predictions to the total predicted positive
instances, including both true positives and false positives. A
higher precision value indicates fewer false positive errors and
a greater reliability in identifying positive instances correctly.
Recall: It is a performance metric that measures the ability of
a model to identify positive instances correctly. It calculates
the ratio of true positive predictions to the total actual positive
instances. A higher recall value indicates a lower rate of false
negatives and a better ability to capture positive instances
accurately.
Specificity: It is a performance metric that measures the ability
of a model to correctly identify negative instances. It calculates
the ratio of true negative predictions to the total actual negative
instances. A higher specificity value indicates a lower rate
of false positives and a better ability to accurately identify
negative instances. Specificity is used particularly in situations
where correctly identifying negative instances is crucial.
F-1 Score: It combines precision and recall into a single mea-
sure to provide an overall evaluation of a model’s performance.
The F1 score is calculated as the harmonic mean of precision
and recall. A higher F1 score indicates a better balance
between precision and recall, making it a valuable metric for
assessing classification models, especially in situations where
there is an imbalance between positive and negative classes in
the dataset.
ROC curve: Receiver operating characteristic (ROC) curve
shows how well a binary classification model performs by
comparing its true positive rate to false positive rate at different
classification thresholds.
AUC score: Area under the curve (AUC) is a numerical value
that summarizes the performance of a binary classification
model based on the ROC curve.

B. Validation of ANFIS-IDS performance

This section provides the performance validation of the
proposed ANFIS-IDS through, first a comparative analysis



with conventional classification models and then contrasting
with a novelty-based IDS.
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Fig. 9. Comparison with [15] w.r.t. ROC curve and AUC score.

1) Comparison with Classification Models: We perform
comparative analysis with the following five conventional
classification ML models:

• Decision Tree Classifier: This is a model that uses a tree-
like structure to make predictions based on input features.
It creates decision rules by recursively splitting the data
based on different features to classify new instances.
Decision trees are known for their interpretability and
effectiveness in classification tasks.

• Gaussian Naive Bayes (NB): This algorithm is based
on Bayes’ theorem with the assumption of feature in-
dependence. It assumes that the input features follow
a Gaussian distribution and uses this information to
calculate the likelihood of each class label. The algorithm
estimates the probabilities using training data and then
classifies new instances based on these probabilities.

• Logistic Regression: It is a binary classification technique
that predicts the probability of an instance belonging
to a class. It models the relationship between input
features and class probabilities using a sigmoid curve.
By estimating feature coefficients, logistic regression
maximizes the likelihood of observed data. It is widely
used, interpretable, and can handle both numerical and
categorical features.

• Support Vector Classifier (SVC): This algorithm finds
an optimal hyperplane that maximally separates classes
in the feature space. The SVC maps features to a higher-
dimensional space and identifies the hyperplane with the
largest margin between classes. It assigns class labels
based on which side of the hyperplane an input falls.
The SVC is effective for complex decision boundaries
and can handle high-dimensional data.

• Linear Discriminant Analysis: It is a statistical technique
used for dimensionality reduction and classification. It
finds a lower-dimensional representation that maximizes
class separation by projecting the data onto a linear space.
This model assumes Gaussian distribution and similar

TABLE III
COMPARISON WITH IDS IN [15]

IDS Model Data Precision Recall F1

Novelty
IDS [15]

OCSVM
(ν=0.011, γ=2e-4)

Benign 1.000 0.704 0.826
Attack 0.768 1.000 0.868

LOF
(k-neighbours= 3k)

Benign 1.000 0.507 0.673
Attack 0.0526 1.000 0.101

ANFIS-IDS TSK Benign 1.000 0.735 0.847
Attack 0.818 1.000 0.899

covariance matrices for the classes. It is effective when
classes are well-separated and can be used for feature
extraction or direct classification.

The results of our performance evaluation, as shown in
Table II, highlight some interesting observations. When con-
sidering benign signals, the Decision Tree Classifier achieves
higher overall metrics, including accuracy and precision, com-
pared to the TSK model of the ANFIS-IDS. However, when
evaluating attack signals, the TSK model exhibits significantly
higher values in terms of accuracy and recall, surpassing the
Decision Tree Classifier. This is of utmost importance since an
IDS should be able to detect a majority, if not all, of the true
alarms, and a higher recall value indicates a low false negative
rate. Although the TSK model shows slightly lower precision
in benign data, this is not particularly detrimental for an IDS,
as it implies that some benign signals may be falsely classified
as attack signals (false alarms), which does not compromise
the overall attack detection capability of the IDS. Furthermore,
when compared with the other classification models consid-
ered, the TSK model consistently achieves higher performance
metrics, not only in attack signals but also in benign signals.
In terms of both jamming and spoofing attacks, the TSK
model outperforms all the machine learning models under
consideration. These findings demonstrate the effectiveness
and superiority of the TSK model in accurately detecting and
mitigating attacks within the UAV network environment.

2) Comparison with Novelty-based IDS: In this section, we
delve into a comparative analysis of the proposed ANFIS-
IDS with a novelty-based IDS specifically tailored for UAV
attack signals. It is important to note that the performance of
the ANFIS-IDS in Table III differs from the one presented
in Table II since, in this case, we train the TSK model
with only two labels by combining jamming and spoofing
samples as the attack signals. For the novelty-based IDS,
we utilize the One-Class Support Vector Machine (OCSVM)
model, setting the hyperparameters ν and γ to 0.0011 and
0.000211, respectively, as suggested in [15]. Additionally, we
train the Local Outlier Factor (LOF) model, configuring the
hyperparameter k-neighbors to 3000. Upon evaluation, we
observe that all models demonstrate flawless performance in
detecting the attack signals, achieving perfect recall values.
Moreover, the models exhibit perfect precision for benign
signals, indicating zero false alarms. To further assess their
performance, we compare the ROC curves and AUC scores, as
illustrated in Fig. 9. The TSK model employed in the ANFIS-
IDS displays a remarkably similar performance to the OCSVM



Fig. 10. Deployment of ML models in micro-controllers.

model, while the LOF model exhibits a slightly less steep ROC
curve. Evaluating the AUC values, both the TSK model and
OCSVM achieve approximately 93% accurate classification,
while the LOF model achieves 82% accurate classification.
These results highlight the robust performance of the ANFIS-
IDS, demonstrating its efficacy in accurately classifying UAV
attack signals and achieving comparable performance with
state-of-the-art novelty-based IDS models.

C. Evaluation of Lightweight Nature

In this section, we evaluate the lightweight nature of the
proposed IDS. First, we build a real testbed with a microcon-
troller, that represents the resource-constrained environment of
a small UAV. We deploy two ML-based models (classification
and novelty detection) and the proposed ANFIS-IDS model in
the testbed to perform comparative analysis. Then we mention
some of the µ-controllers with even lesser memory to advocate
the usefulness of the proposed IDS.

1) Deploying on µ-controller: Fig. 10 presents the work-
flow of deploying an ML model in µ-controller, where training
is performed in a computational resource-full device, and µ-
controller is loaded with the already trained model to act
as an interface. First, we trained the ML models in Google
Colab [36] and then converted the trained tensorflow models
(with final weights and biases) to tensorflowLite models [37]
as the TinyML [38]. Finally, we convert the tensorflowLite
model to a header file (“.h”) as byte code, to be loaded to the
µ-controller.

TABLE IV
EVALUTION OF LIGHTWEIGHT NATURE

Model Size (kB) ExecutionTime (µseconds)
Decision Tree Classifier 25 3845

OCSVM (ν=0.011, γ=2e-4) 20 3958
TSK (ANFIS-IDS) 5 3024

For the ANFIS-IDS, we retrieve the membership functions
and rules from the Matlab Fuzzy Logic Toolbox and code the
Arduino sketch for the µ-controller. The real testbed imple-
mentation is presented in Fig. 11. We utilized Arduino Nano
33 BLE Sense, since it is one of the twelve µ-controllers that
are supported by tensorflowLite [39]. We used a servo motor as
the actuator device, which will be rotated to different angles
according to the detected signal label. For the ANFIS-IDS,
we passed the input pattern through the serial monitor, while
for the TinyML case, we passed test samples in the sketch.
In both cases, the actuation is done at the servo. Table IV
presents the evaluation of the ANFIS-IDS’s lightweight nature.
It is observed that the header files for the ML models are
sized four to five times larger than the ANFIS-IDS sketch,
meaning ANFIS-IDS will require less space in the SRAM. It

(a) (b)

Fig. 11. Hardware-emulated UAV testbed (resource-limited µ-controller) for
deploying IDSs: (a) Arduino Nano 33 BLE with servo as the actuator and (b)
Detection results displayed on Arduino IDE serial monitor.

will lead to lower computational requirements, i.e., less power
consumption. For untethered edge units like UAVs, it will
lead to longer flight times. Again, we compare the execution
times required for different models in detecting the label of a
given sample. We averaged the execution times from 300 test
samples (including 100 samples from each of the three labels)
and observed that ANFIS-IDS takes 25% less time than the
ML models.

2) Deploying on µ-controllers with lesser memory: Here,
we highlight the significance of the proposed IDS by dis-
cussing its suitability for µ-controllers with extremely lim-
ited flash memory. We consider µ-controllers such as the
‘Microchip PIC16F688’ and ‘STM8S003F3’, which possess a
mere 8KB of flash memory. Remarkably, this memory capacity
is even lower than the sizes of the header files associated with
the previously mentioned ML models. This means it is not
even possible to load the TinyML models in these low-memory
µ-controllers. In this context, the ANFIS-IDS emerges as the
exclusive viable choice for such devices with significantly
constrained resources.

VII. CONCLUSION

In this work, we design and implement a lightweight
IDS based on the ANFIS specifically tailored for resource-
constrained small UAV networks. Our IDS demonstrates ex-
ceptional capabilities in effectively detecting GPS spoofing
and jamming attacks, yielding outstanding performance met-
rics. To validate the efficacy of our proposed model, we
conducted comprehensive evaluations, comparing it against
conventional data-driven classification models as well as state-
of-the-art IDSs deployed in real-world scenarios. Furthermore,
we verified the lightweight nature of our IDS through its
successful deployment in a hardware-emulated UAV testbed,
which ensured its practical feasibility within resource-limited



environments. To the best of our knowledge, the proposed
IDS is the first UAV security solution that leverages ANFIS
to specifically address the networking vulnerabilities of these
resource-constrained devices, marking a significant milestone
in the field. As part of our future work, we will focus on work-
ing with a more sophisticated dataset, encompassing diverse
attack scenarios and network conditions, to further optimize
the ANFIS model and enhance its overall performance.
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