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ABSTRACT
State estimation plays a critically important role in ensuring
the secure and reliable operation of the electric grid. Re-
cent works have shown that the state estimation process is
vulnerable to stealthy attacks where an adversary can alter
certain measurements to corrupt the solution of the process,
but evade the existing bad data detection algorithms and
remain invisible to the system operator. Since the state es-
timation result is used to compute optimal power flow and
perform contingency analysis, incorrect estimation can un-
dermine economic and secure system operation. However,
an adversary needs sufficient resources as well as necessary
knowledge to achieve a desired attack outcome. The knowl-
edge that is required to launch an attack mainly includes
the measurements considered in state estimation, the con-
nectivity among the buses, and the power line admittances.
Uncertainty in information limits the potential attack space
for an attacker. This advantage of uncertainty enables us to
apply moving target defense (MTD) strategies for develop-
ing a proactive defense mechanism for state estimation.

In this paper, we propose an MTD mechanism for secur-
ing state estimation, which has several characteristics: (i)
increase the knowledge uncertainty for attackers, (ii) reduce
the window of attack opportunity, and (iii) increase the at-
tack cost. In this mechanism, we apply controlled random-
ization on the power grid system properties, mainly on the
set of measurements that are considered in state estimation,
and the topology, especially the line admittances. We thor-
oughly analyze the performance of the proposed mechanism
on the standard IEEE 14- and 30-bus test systems.
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1. INTRODUCTION
In the electric power grid, state estimation (SE) is the

process of finding the best estimate for the system state in
a weighted least square sense, given a measurement model
and a set of measurements acquired through a Supervisory
Control and Data Acquisition (SCADA) system. The ‘state’
corresponds to the vector of bus voltages, from which line
currents and power-flows can be computed. State estima-
tion solutions aid system operators in reliability assessment,
initiating corrective control measures and enabling pricing
calculations for real-time electricity markets. Hence, state
estimation is a critical and inherent part of energy manage-
ment system (EMS) applications for the power grid. How-
ever, critical infrastructures relying on SCADA based mea-
surements are vulnerable to cyber-attacks [1]. It is worth
mentioning that while phasor measurement units are grad-
ually being deployed, the current grid still largely relies on
extensive SCADA measurements for several EMS applica-
tions, including state estimation.

Recent work by [2] has revealed that state estimation is
vulnerable to cyber-attacks, where adversaries can alter cer-
tain measurements by injecting false data to corrupt the
estimation, but remain invisible to the system operator by
evading the existing bad data detection algorithms. The key
idea behind these attacks, called Undetected False Data In-
jection (UFDI) attacks, is as follows. State estimation uses
high measurement redundancy to detect and filter bad or
erroneous meter measurements by checking if the measure-
ment residual (l2-norm of the difference between observed
and estimated measurements) is below a certain threshold [3,
4]. An adversary who knows the complete measurement
model can then manipulate meter measurements to be con-
sistent with the measurement model to bypass the bad data
detection (BDD) process [2]. While the extent of model ac-
curacy on attacks is analyzed in [5], it is shown in [6, 7]
that UFDI attacks, when adversaries have perfect knowl-
edge, can be defended if a strategically chosen set of mea-
surements are secured. However, due to the resource con-
straint issues with legacy equipment, securing those selected
measurements might not always be feasible. Moreover, if



one or more secured measurements become unavailable, the
correctness of the state estimation is again in question.

An undetected attack on state estimation has several con-
straints, particularly in terms of an adversary’s knowledge of
the system and resources for achieving a desired attack out-
come. The knowledge that is required to launch an attack
mainly includes the measurements that are taken for state
estimation, the grid topology (i.e., connectivity among the
buses), and the admittances of the power lines [2]. Though
partial information might still be sufficient to launch some
attacks [5], [8], information uncertainly limits the potential
attack space. We take advantage of this uncertainty to ap-
ply moving target defense (MTD) strategies for developing
a proactive defense mechanism for state estimation.

In this work, we propose an MTD mechanism with the
following objectives: (i) increasing the complexity for at-
tackers by introducing uncertainty, (ii) reducing the window
of attack opportunity (i.e., the attack space) for attackers,
and (iii) increasing the attack cost (e.g., the number of mea-
surements to be compromised). In our MTD mechanism, we
randomize the set of measurements that are considered in
state estimation and the topology with respect to the line
admittances. The choice of a measurement set for state es-
timation is not unconstrained. The chosen set of measure-
ments should be able to observe the system, i.e., all the
unknown states of the system can be computed uniquely
from the measurements. We perturb the admittances of a
selected number of lines to perturb the topology. In this ap-
proach, we assume that a change in the admittance of a line
can be performed if a Distributed Flexible AC Transmis-
sion System (D-FACTS) device is deployed there [9]. We
thoroughly analyze the performance of our mechanism on
the standard IEEE 14- and 30-bus test systems [10] using a
UFDI attack verification model which we proposed in [11].
Our evaluation shows impressive results in securing state
estimation from UFDI attacks by significantly reducing the
number of potential attack vectors.

The rest of this paper is organized as follows: In Section 2,
we provide the necessary background. We present the MTD
mechanism in Section 3. The evaluation results of the MTD
mechanism is presented in Section 4. We briefly discuss the
related work in Section 5 and conclude in Section 6.

2. BACKGROUND
Stealthy attacks on state estimation (as shown in [2], [5])

were based on the DC (or linearized) power flow model. The
DC model is simplistic but is popular as it is useful for pre-
liminary analytical power system studies. We illustrate our
techniques using the DC model but the strategies are equally
applicable for the AC (non-linear) model. In fact, it is easier
for an adversary to attack the DC model and so if we we can
defend UFDI attacks against the DC state estimation, then
we can expect to do better in the AC context.

2.1 DC Power Flow Model
In the DC power flow model, the power balance equations

in a power system are expressed by assuming the impedance
of a transmission line purely in terms of its reactance [12].
The voltage magnitudes at all buses are taken fixed at 1 per
unit and only the phase angles are treated as the variables.
Thus, the voltage phasor at bus i is expressed by 1∠θi. De-
noting the admittance of the line between buses i and j by
Yij , the real power-flow (Pij) across a transmission line is

given by: Pij = Yij(θi − θj). Yij is the reciprocal of the
reactance. The power-balance constraint that equates the
algebraic sum of powers incident at every bus to zero cre-
ates a linear system of equations of the form: [B][θ] = [P].

2.2 State Estimation and UFDI Attack
The state estimation problem is to estimate n power sys-

tem state variables in x = (x1, x2, · · · , xn)
T based on a set

of m (m > n) measurements z = (z1, z2, · · · , zm)T [4], ac-
cording to the following relationship:

z = h(x) + e

Here, h(x) = (h1(x1, · · · , xn), · · · , hm(x1, · · · , xn))
T and e

is the vector of measurement errors. In the case of the lin-
earized estimation model (i.e., the DC power flow model),
z = Hx + e, where H = (hi,j)m×n. H is known as the
Jacobian matrix.

When the measurement errors are zero mean and normally
distributed, the state estimate x̂ is calculated as:

x̂ = (HTWH)−1HTWz

Here, W is a diagonal matrix whose elements are reciprocals
of variances of the meter errors. Thus, estimated measure-
ments are calculated as Hx̂ and the residual ||z − Hx̂|| is
used to identify bad data. The condition ||z − Hx̂|| > τ
implies the presence of bad data [4], τ is set using a hypoth-
esis test at a significance level. UFDI attacks [2] are based
on the idea that if the attack vector a is taken equal to Hc,
then the residual remains unchanged, since z+a = H(x̂+c),
the residual ||(z+a)−H(x̂+c)|| = ||z−Hx̂||. The implicit
assumption here is that the adversary has full knowledge of
the measurement model H.

2.3 Attack Attributes
The UFDI attack model can be expressed with respect to

a number of attributes of an attacker as follows:

• Knowledge Limitation: State estimation of a power
system is done based on the topology of the grid and
a number of power measurements taken on different
lines and buses. For a successful UFDI attack, an
attacker needs to know the connectivity among the
buses and the electrical parameters (i.e., admittances)
of the transmission lines [2], which is not trivial. The
attacker also needs to know the set of measurements
considered in state estimation.

• Accessibility and Resource Constraints: An at-
tacker usually does not have access to all of the mea-
surements, when physical or remote access to substa-
tions is restricted or when certain measurements are
already secured. Additionally, an adversary may be
constrained with respect to the cost or effort to mount
attacks on measurements vastly distributed. In such
cases, an adversary is limited to compromising or al-
tering only a limited subset of measurements or buses.
The extent of access is limited by the attacker’s re-
source limitations.

• Attack Target: An attacker may have a specific aim
of corrupting the estimation of a certain set of state
targeting a specific impact on the system.



Figure 1: The architecture of moving target defense mechanism for hardening the security of state estimation.

2.4 Moving Target Defense
The idea of moving target defense (MTD) has been stud-

ied for a decade, especially in the field of cybersecurity [13].
Typical information technology systems operate in a static
environment. Configuration parameters, such as IP addresses,
DNS names, network topology, routing entries, security poli-
cies, software stacks, etc. remain mostly static over rela-
tively long periods of time. When a system is static, attack-
ers gets enough time to know the configuration and behavior
of the system, to understand the vulnerabilities and corre-
sponding attack vectors, and finally, to launch attacks on
the system. The same is true for cyber-physical systems like
power grids, where the physical and cyber system are highly
static, the operations are fixed, and the protocols are known.

Moving target defense is the concept of controlled change
across multiple system dimensions in order to (i) increase
uncertainty and apparent complexity for attackers, (ii) re-
duce their opportunity space, and (iii) increase the costs of
their probing and attack efforts [14]. Usually, MTD is not
meant to provide perfect security. The aim of MTD is to
enable the operations to be executed safely in a compro-
mised environment, where the system is defensible rather
than perfectly secure. The potential of moving target de-
fense mechanisms lies in being able to randomize or perturb
one or more of the UFDI attack attributes. In this work, we
devise a moving target defense mechanism considering the
knowledge attribute, where we add uncertainty in the infor-
mation by changing the set of measurements and the topol-
ogy properties (i.e., line admittances). Even though, the
attacker may still be successful in launching UFDI attacks,
due to the uncertainty introduced by the MTD strategy, the
attack space reduces.

3. MOVING TARGET DEFENSE AGAINST
UFDI ATTACKS

In this section, we discuss the strategy of our MTD mech-
anism and the corresponding formal models.

3.1 Moving Target Defense Strategy
In order to increase the uncertainty of the attacker’s knowl-

edge about the power grid system related to state estima-
tion, our MTD mechanism takes two properties of the sys-
tem: (i) the set of measurements considered in state estima-
tion and (ii) the admittances of a set of lines in the topology.
In the following we describe the ideas behind randomizing
these properties.

3.1.1 Changing the set of measurements
In regular practice, a fixed number of measurements are

used in the state estimation process. According to the bad
data detection algorithms, some of the measurements can be
ignored in the process, if they are noisy enough (i.e., bad)
relative to rest of the measurements. An adversary needs to
know the set of measurements used in state estimation and
alter a group of measurements from the set that are required
to launch a specific UFDI attack. If the attacker does not
know the measurement set correctly, he may not be able to
identify this group of required measurements perfectly, i.e.,
one or more measurements can be missing in the group or
included without necessity. Therefore, if we can randomize
the measurement set used in state estimation by including
a number of measurements from the unused (but possible)
measurements, attackers knowledge about the measurement
set becomes uncertain.

For an example, let us consider IEEE 14 bus test sys-
tem [10], which has 14 buses and 20 lines. With respect
to the DC power model, it is possible to have 54 mea-
surements (considering forward and backward power flows
through transmission lines and power consumptions at buses).
Among these possible measurements, let us assume that a
fixed set of 30 measurements are taken (recorded and re-
ported using sensors/meters) for state estimation, while the
rest (i.e., remaining 24 potential measurements) are not.
According to our MTD mechanism, we can take a set of 7
measurements from the unused measurements by deploying



measurement sensors there (if necessary). Then, from the
total 37 measurements, we can select 30 measurements at
random to be used in state estimation. However, the se-
lected set must be capable of observe the system. Later in
this section, we present a formal model of selecting a mea-
surement set according to the observability requirement.

3.1.2 Perturbing line admittances
There are distributed flexible AC transmission system (D-

FACTS) devices, which can be deployed on transmission
lines and are capable of performing active impedance (i.e.,
reactance) injection [15]. Leveraging this capability of D-
FACTS devices, we consider the randomization of line ad-
mittances in our MTD mechanism. We assume that the
admittance of a line can only be randomized if a D-FACTS
device is deployed there. However, there are some limita-
tions of using D-FACTS devices. Changes in impedance
have impact on the power flows, which can easily impact
the power system operations, e.g., the optimal power flow
of the system [3].

In order to obtain the effect on the power flows due to
the deliberate changes in impedance of power lines with the
help of D-FACTS devices, a sensitivity analysis related to D-
FACTS devices is thoroughly explained in [9]. In our MTD
mechanism, we consider a feasibility constraint in chang-
ing line admittances, which ensures that the secured opti-
mal power flow solution [3] remains the same in spite of
the changes in the admittances, although some of the power
flows must change. We also need to ensure that the changes
cannot be very trivial. Further, all the lines with D-FACTS
devices will not be randomized always. A set of lines among
them will be chosen every time (i.e., with respect to each
state estimation), and only admittances of these chosen lines
will be changed. We assume that an adversary may know the
actual admittance (i.e., base admittance) of each of these
lines, though he does not know the change amount, and
thereby, the changed admittance is assumed to be unknown
to the adversary. We also assume that when a set of line ad-
mittances are changed, the previously changed admittances
are returned back to the base admittances. As a result, at a
particular time admittances of only the selected set of lines
are unknown to the adversary.

Arguably power system operations personnel may not be
willing to perturb line impedances for the exclusive purpose
of detecting attacks. However, D-FACTS based perturba-
tion of line parameters has been considered for minimization
of power system losses and voltage control applications [9].
In practice, such line parameter changes could be leveraged
for detecting attacks. In the rest of the paper we illustrate
the MTD through perturbation of line parameters as exclu-
sively done for attack detection while keeping in mind that
perturbation done for other optimization applications could
be leveraged instead.

3.2 Formal Model for Strategy Selection
In Figure 1, we show the architecture of moving target

defense mechanism. It is a combination of two modules,
as shown in the figure: one for the arbitrary set of mea-
surements selection for state estimation and another for the
arbitrary set of lines selection for admittance randomization.
In this section, we present the formal designs of these two
modules. Different notations that we use in these models
are shown in Table 1.

Table 1: Modeling Parameters
NotationDefinition
b The number of buses in the grid.
l The number of lines in the grid topology.
fi The from-bus of line i.
ei The to-bus of line i.
di The admittance of line i.
gi Whether the admittance of line i is known.
PL
i The power flow through line i.

PB
j The power consumption at bus j.

θj The state value: the voltage phase angle at bus j.
n The number of states.
m The number of potential measurements.
ai If measurement i needs to be altered for the attack.
ti Whether potential measurement i is taken.
hi Whether the admittance of line i is perturbed.

3.2.1 Basic Power Model
Consistent with the DC power flow model, the admittance

of a branch (i.e., line) is computed purely from its reactance.
The direction of the line is assumed based on the current
flow direction (i.e., from a end-bus to another end-bus). We
denote the two end-buses of line i using fi (from-bus) and
ei (to-bus), where 1 ≤ i ≤ l, 1 ≤ fi, ei ≤ b, l is the number
of lines, and b is the number of buses. The admittance of
line i is denoted by di. Each row of H corresponds to a
power equation. The first 2l rows correspond to the line
power flow measurements, while the rest corresponds to the
power consumption measurements. To represent a power
equation, we define PL

i to denote the power flow through line
i, PB

j to denote the power consumption by bus j, and θj to
denote the state value, i.e., the voltage phase angle at bus j.
Parameter ai denotes whether measurement i is required to
be altered (by injecting false data) for the attack. We model
incomplete information with respect to line admittance and
use the variable gi to denote whether the attacker knows the
admittance of line i.

In the DC model, two measurements can be taken (i.e.,
recorded and reported by meters) for each line: the forward
and backward current flows. These measurements are equal
in magnitude but the opposite in direction. For each bus,
a measurement can be taken for the power consumption at
the bus. Therefore, for a power system with l number of
lines and b number of buses, there are maximally 2l+b (i.e.,
m = 2l + b) number of potential measurements. Though a
significantly smaller number of measurements are sufficient
for state estimation, redundancy is provided to identify and
filter bad data. We define ti to denote whether potential
measurement i is taken. Each row of H corresponds to a
power equation. The first l rows correspond to the forward
line power flows, while the second l rows correspond to the
backward line power flows. The power flow of line i have the
following relation with the states of the connected buses:

∀1≤i≤l PL
i = di(θfi − θei) (1)

The last n rows of H correspond to the bus power con-
sumptions. The power consumption at bus j is simply the
summation of the power flows of the lines incident to this
bus. If Lj,in and Lj,out are the sets of incoming and outgoing
lines of bus j, respectively, then the consumption is:

∀1≤j≤b PB
j =

∑

i∈Lj,in

PL
i −

∑

i∈Lj,out

PL
i (2)



Basically, state estimation is to find the voltage phase an-
gle (θ) of each bus by solving the equations for all of the
measurements (PL

i s and PB
j s).

3.2.2 Selection of Measurement Set
The power system is observable, when the measurements,

each of which represent a power equation, must solve the
(unknown) states. Therefore, we consider Equations (1) and
(2) as constraints. Now, if a measurement is taken, it’s
power flow or consumption measurement value assumed to
be zero. That is:

∀1≤i≤l (ti ∨ tl+i) → (PL
i = 0)

∀1≤j≤b t2l+j → (PB
j = 0)

If the set of taken measurements can observe the system,
when we consider each of them as zero, all of the states must
be the same, i.e., the difference between the states of each
connecting pair of buses should be zero. Therefore, if the
system is not observable with this set, then there exists at
least a pair of buses which have different states with respect
to each other (i.e., nonzero difference). We find whether
a set is observable using this contradiction. We take the
following constraint that all of the states cannot be the same:

∃1≤j1,j2≤b,j1 �=j2 θj1 �= θj2

If there is no satisfiable solution to this model, then the set
of measurements can observe the system.

3.2.3 Selection of Lines for Admittance Perturbation
In the selection of the lines and corresponding changes in

admittances, the main constraint is that the changes need to
be done such that the optimal power flow (OPF) cost does
not increase. Specifically, our aim is to keep the generation
dispatch as it is, i.e., according to the existing OPF, so that
there is a minimum impact on the system operation due to
the topology change.

The main constraint for OPF is that the total generation
must be equal to the total expected load. Since we are not
changing the demands at different buses, the required to-
tal generation remains the same. Now, the existing OPF
solution can remain optimal after the admittance changes,
if and only if the changed power flows still remain within
associated transmission limits. Since all the power flow and
consumption equations must hold, we consider them (i.e.,
Equations (1) and (2)) as constraints:

∀1≤i≤l PL
i = d̂i(θfi − θei)

∀1≤j≤b PB
j =

∑

i∈Lj,in

PL
i −

∑

i∈Lj,out

PL
i

Here, d̂i is the changed admittance of line i, such that d̂i =
di + Δdi, where Δdi is changes made on line i. The admit-
tance of a line can be changed only if D-FACTS devices are
deployed. Therefore, considering that a line will be chosen
for admittance change when necessary D-FACTS facility is
installed there, we define hi for denoting whether the line
is chosen for admittance change. Then, the following con-
straint holds on Δdi:

∀1≤i≤l ¬hi → (Δdi = 0)

If there is a change in the line admittance, the change
cannot be very small so that the change does not have any

Figure 2: IEEE 14-bus test system.

impact. If R is the ratio of the minimum change over the line
admittance, then we can express this constraint as follows:

∀1≤i≤l hi → (Δdi ≥ R× di) ∨ (Δdi ≤ −R× di)

Each line has a capacity for the power flow, i.e., the max-
imum power that can flow through that line. Let PL

i,max be
the line capacity. Therefore:

∀1≤i≤l PL
i ≤ PL

i,max

The change of a line’s admittance would be useful to hin-
der adversaries from launching an attack, if one or more
measurements associated to this line are taken. It is worth
mentioning that there are four measurements associated to
a line: two (forward and backward) line flow measurements
and two bus consumption measurements (at the end buses).
Although the larger number of measurements is taken, the
more benefit is supposed to be there, in this model, we con-
sider the minimum case as a constraint, i.e., at least one of
the measurements associated to the line needs to be taken:

∀1≤i≤l hi → mi ∨ml+i ∨mfi ∨mei

The solution to this model verifies whether a given choice
of admittance changes on a selected set of lines satisfy the
constraints. This model can even synthesize all (or a number
of) potential sets of lines for admittance randomization with
changed admittance values.

3.2.4 Impact of MTD on Attack Attributes
The measurement set randomization: In order to launch
a UFDI attack, i.e., changing the states of a group of buses,
power flows through some lines and power consumptions at
some buses are impacted (i.e., changed by ΔPL

i and ΔPB
j

amounts, refer to the Appendix for the detailed formaliza-
tion of UFDI attack constraints). The attacker needs to
inject necessary false data to the measurements, i.e., meter
readings associated to those power flows and consumptions.
However, the attacker only needs to inject necessary false
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Figure 3: The probability of attack success in the cases of different access capabilities: (a) measurement
based MTD strategy, (b) measurement and line admittance based MTD strategy (14-bus system), and (c)
measurement and line admittance based MTD strategy (30-bus system).

data to a measurement i, when it is taken. That is:

∀1≤i≤l (ΔPL
i �= 0) → (ti → ai) ∧ (tl+i → al+i)

∀1≤j≤b (ΔPB
j �= 0) → (t2l+j → a2l+j)

The randomization of the set of measurements, considered
in state estimation, make ti uncertain for the adversary.
Perturbation of line admittances: If the admittance of
a line is unknown to the attacker, he cannot determine the
necessary changes that she needs to make in the power flow
measurements of the line. The condition is formalized as:

∀1≤i≤l (ΔPL
i �= 0) → ((ti ∨ tl+i) → gi)

Moreover, when the admittance of a line is perturbed (i.e.,
randomized), we also consider that the admittance is (now)
unknown to the adversary, although the actual admittance
(we call it as base admittance) of the line may be known to
the adversary. Therefore, we take the following constraint:

∀1≤i≤l hi → ¬gi

4. PERFORMANCE EVALUATION
We evaluate the performance of our proposed MTD mech-

anism with respect to successful UFDI attacks on different
bus states. We use attackability, defined as the number of
states which can be attacked (i.e., infected by UFDI attacks)
over the total number of states, as the evaluation metric.

4.1 Implementation of Formal Models
In order to verify whether a successful UFDI attack can be

launched against one or more targeted states, we encode the
UFDI attack verification model [11] (see the Appendix for
details) using satisfiability modulo theories (SMT) [16]. To
execute the model, we use Z3, an efficient SMT solver [17].
By executing the model, we obtain the verification result as
either satisfiable (sat) or unsatisfiable. When the result is
sat, it specifies that there exists an attack vector satisfying
the constraints regarding the attack attributes.

In order to implement a prototype of the proposed MTD
mechanism, we again use SMT to encode the formal model
of verifying whether a measurement set is observable (refer
to Section 3.2.2). By solving this model using Z3, we gener-
ate a number of measurement sets to be used in state esti-
mation. In our MTD mechanism, we randomly choose one

among them following the uniform distribution. We also en-
code the formal model for the line admittance randomization
that we present in Section 3.2.3. We first use the uniform
distribution to select a subset of lines among the D-FACTS
device deployed lines. Then, executing this model (in Z3)
we figure out whether the admittances of these lines can be
changed while satisfying all the necessary constraints.

4.2 Methodology
We evaluate the performance of our proposed moving tar-

get defense mechanism by analyzing the attackability under
different scenarios considering access capabilities, knowledge
limitations, and security measures. We evaluate the perfor-
mance of our proposed MTD mechanism using IEEE 14-bus
test system (Figure 2) [10]. It is consists of 14 buses, 20
transmission lines, and 54 possible measurements as shown
in the figure. We also undertake evaluation using IEEE 30-
bus test system for some scenarios to show the impact of the
system size (i.e., the number of buses) on the performance.

In our evaluation, we mainly consider two kinds of ad-
versaries: (i) naive and (ii) sophisticated. The first type
of adversary as the name indicates is unaware of the MTD
scheme. He believes that a fixed set of measurements is used
in state estimation. The second type of adversary knows
that the MTD mechanism is running at the grid operator’s
side. As a result, in order to maximize his chances of a suc-
cessful attack, he picks an attack vector that can cover as
many potential sets of measurements as possible within his
resource and access limits. For both kinds of adversaries,
we consider the same resource constraints. An adversary
can attack 13-15 measurements at a time, while these mea-
surements cannot be distributed more than 7-8 buses of the
system. We execute each evaluation experiment for at least
30 times and take the arithmetic average of them.

4.3 Evaluation Results and Discussion

4.3.1 Performance with respect to Accessibility
Figure 3(a) shows the attackability, i.e., the number of

states that can be attacked out of the total, in three differ-
ent cases with respect to the application of the MTD (i.e.,
defense based on our proposed MTD mechanism) and the
adversary type. In the first case no MTD strategy is ap-
plied, while in the latter two cases the MTD is used but the
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Figure 4: The attackability in the cases of different levels of knowledge about line admittances: (a) measure-
ment based MTD strategy, (b) measurement and line admittance based MTD strategy (14-bus system), and
(c) measurement and line admittance based MTD strategy (30-bus system).
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Figure 5: The attackability in the cases of different numbers of secured measurements in different scenarios:
(a) measurement based MTD strategy, (b) measurement and line admittance based MTD strategy (14-bus
system), and (c) measurement and line admittance based MTD strategy (30-bus system).

type of adversary is different. In the second case the ad-
versary is naive, while in the third case he is sophisticated.
In this set of experiments, only the MTD strategy of ran-
domizing the set of measurements used for state estimation
is applied. Here, we consider the 14-bus test system. We
take 100 sets of 30 measurements arbitrarily chosen from 37
(taken) measurements. We vary the accessibility, i.e., access
capability, of the adversary in the experiments from 50% to
100%. According to the experiment results, we observe that
the attack success probability is always high when there is no
MTD. In both of the cases of naive and sophisticated adver-
saries, the attackability reduces significantly. In the case of
a sophisticated adversary, as would be expected, the attack-
ability reduces less compared to a naive adversary. This is
because the sophisticated adversary uses all of his resources
to cover as many potential sets of measurements as possible,
while the naive adversary only believes one particular set of
measurements to be used in the state estimation process.
The graphs in Figure 3(a) also show the impact of access
capability of the adversary on the atatckability. The results
are obvious, i.e., the lower the attacker’s access capability,
the better the performance of MTD strategy, which is able
reduce attackability down to 5% when the access capability
is no more than 60%.

Figure 3(b) shows the attackability under different attack
capabilities of the adversary as well. However, in this set
of experiments, the MTD strategy of perturbing line ad-
mittances is applied along with the randomization of the
set of measurements used for state estimation. We assume
that D-FACTS devices are deployed on an arbitrary set of 5
lines, while only 2 lines are chosen among them for admit-
tance perturbation at each time. According to the graphs in
Figure 3(b), we can see that the MTD mechanism shows
improved performance when we apply both of the MTD
strategies. This performance improvement is nearly more
than 10% with respect to the measurement set randomiza-
tion based MTD alone.

In Figure 3(c), we present the performance of our pro-
posed MTD mechanism in the case of the 30-bus test sys-
tem by varying the attacker’s access capability. We observe
the similar behavior in this case as well. Note that we have
30 states associated to 30 buses and we consider 100 sets of
65 measurements. Each of these sets are arbitrarily chosen
from 80 (taken) measurements.

4.3.2 Performance with respect to Knowledge:
We evaluate the impact of the adversary’s knowledge lim-

itation on the performance of the MTD. Again we consider



the same three cases, i.e., without MTD, MTD with naive
adversary, and MTD with sophisticated adversary. Fig-
ure 4(a) shows the impact of knowledge limitation when
only measurement based MTD strategy is applied (in the
14-bus system). We observe that when the adversary has
limited knowledge, MTD strategies perform better. How-
ever, the impact of knowledge limitation is significant in the
case of the sophisticated adversary. Since a sophisticated
adversary leverages knowledge about the system and the
MTD strategy in order to increase his attack success, when
the knowledge is limited to less than 80%, his attack success
drops significantly.

In the case of the MTD considering both randomization of
the measurement set and perturbation of line admittances,
we see similar behavior (see Figure 4(b) and Figure 4(c) for
the 14- and 30-bus systems, respectively). The only differ-
ence is that the impact of limited knowledge is higher in this
case. That is, the performance of the MTD increases with
the decrease of the adversary’s knowledge and this increase
is more significant when both MTD strategies are applied.

4.3.3 Performance with respect to Existing Security:
Figure 5(a) and Figure 5(b) show the impact of secured

(i.e., data integrity protected) measurements on the perfor-
mance of MTD in the case of the 14-bus system. Figure 5(a)
shows the case when only measurement set randomization
strategy is used and, and Figure 5(b) shows the case when
both measurement set randomization and line admittance
perturbation strategies are used. The more secured mea-
surements the better is the performance of MTD strate-
gies. Note that the measurements are secured arbitrarily,
i.e., they are not secured optimally to achieve the best per-
formance. Clearly the performance is better when both of
the MTD strategies are applied, as evidenced by the graphs
in the figures. We observe the similar behavior in the case
of the 30-bus system (see Figure 5(c)).

5. RELATED WORK
The concept of undetected false data injection attack was

presented in [2] for the first time, and was extended in [18].
The authors discussed UFDI attacks considering different
scenarios, such as limited access to meters and limited re-
sources to compromise meters, under random and specific
targets, assuming that the adversary has complete informa-
tion about the grid. In the general case, the attack vector
computation problem is NP-complete. Therefore, the au-
thors presented few heuristic approaches that can find attack
vectors. UFDI attacks with incomplete or partial informa-
tion are discussed in [5, 8]. These works mathematically
showed the impact of incomplete knowledge on the poten-
tiality of UFDI attacks. Several security metrics are pro-
posed in [19] to quantify the importance of individual buses
and the cost of attacking individual measurements consid-
ering the vulnerability of the communication infrastructure.
In [20], authors claimed that an l1 relaxation-based tech-
nique provides an exact optimal solution of the data attack
construction problem.

Some work has been done to defend state estimation from
UFDI attacks. For example, Kosut et al. in [21] proposed a
mechanism based on the generalized likelihood ratio test to
detect UFDI attacks. Similar approach is found in [22] with
the help of adaptive cumulative sum control chart test. Few
other works proposed mechanisms to identify the optimal

set of measurements to be secured to make UFDI attacks
detectable. Bobba et al. in [6] showed that for detect-
ing UFDI attacks it is necessary and sufficient to protect
a set of basic measurements, which is actually a minimum
set of measurements ensuring observability. Kim and Poor
in [7] proposed a greedy suboptimal algorithm, which se-
lects a subset of measurements that can be made immune
from false data injection for the protection against UFDI at-
tacks. In our recent work, we have addressed the problem of
verifying stealthy attacks on state estimation by providing
a comprehensive model of the attack attributes along with
the impact of such attacks on the economic operation of the
system [11, 23, 24]. In addition, in [24], we have devised
a security architecture synthesis mechanism with respect to
a given attack model and the grid operator’s resource con-
straints. Since the number of measurements to be secured is
not so small, applying the group of security measures incurs
substantial cost, especially due to the existing legacy hybrid
system. Therefore, a cheaper and useful defense strategy
like moving target defense (MTD) seems to be attractive.

MTD techniques have been presented for traditional en-
terprise networks in recent literature. Antonatos et al. pro-
posed a network address space randomization scheme to of-
fer an IP hopping approach that can defend against hitlist
worms [25]. Duan et al. presented a proactive random route
mutation technique in [26], which enables the random and
simultaneous changes of the routes of the multiple flows in a
network. However, to our knowledge, moving target based
defenses haven’t received as much attention in SCADA and
other control networks. In [27], Mo and Sinopoli proposed
perturbing the input signal to a control system in order to
detect replay attacks. Controlled perturbation of line admit-
tances to detect UFDI was proposed in [28, 29]. Line ad-
mittance perturbation along with parameter estimation was
shown to enhance the detectability of UFDI attacks on non-
linear state estimation in [30]. In this work, we go beyond
line admittance perturbation and propose a multipronged,
comprehensive MTD strategy where the measurements used
in state estimation are changed along with the line admit-
tances in a controlled fashion. The proposed approach is
novel in this domain.

6. CONCLUSION
Securing state estimation against cyber-attacks is of para-

mount importance to maintain the integrity of the elec-
tric power grid. One way to secure state estimation from
stealthy attacks like undetected false data injection attack
is by securing a strategically selected number of measure-
ments, which can be beyond the capability of the stakehold-
ers. Therefore, a less expensive security solution like MTD
mechanism that we have proposed in this paper is inter-
esting. In this mechanism, we have applied randomization
on the power grid system properties, particularly the set of
measurements that is used in state estimation and the ad-
mittances of a set of lines. We have presented formal models
to find the observable sets of measurements and the lines to
randomize admittances. We have evaluated the performance
of our mechanism on the standard IEEE test systems and
have presented the results. We have found that our proposed
MTD mechanism can reduce the attackability by 50%-60%
compared to the situation when this mechanism is not ap-
plied. While a linear power system model with no losses was
used here, a future direction of this work would be to extend



the current solution to account for losses and eventually deal
with the inherent nonlinearity in power systems.
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APPENDIX

A. FORMAL MODEL OF UFDI ATTACKS
We utilize the formal model of verifying UFDI attacks, as

described in our previous work [11, 24], for evaluating the
efficacy of our proposed MTD mechanism. Here, we briefly
describe this verification model for readers’ convenience.

We define cj to denote whether state j (1 ≤ j ≤ n) is af-
fected (i.e., changed to an incorrect value) due to false data
injection. Note that, in the DC model, each state corre-
sponds to a bus. Thus, n is equal to b. The attacker may
not be able to alter a measurement due to inaccessibility or
existing security measures. We define ri to denote whether
measurement i is accessible to the attacker. We also define
si to denote whether the measurement is secured or not.

A.1 Formalization of Attacks on States
The attack on state j specifies that the voltage phase angle

at bus j is changed. This condition is formalized as follows:

∀1≤j≤n cj → (Δθj �= 0)

From Equation (1), it is obvious that a change of PL
i is

required based on the changes on state fi (θfi) and/or state
ei (θei). If in the case of false data injection, PL

i , θfi , and

θei are changed to P ′L
i , θ′fi , and θ′ei , then Equation (1)

turns into the following:

P ′L
i = di(θ

′
fi − θ′ei)

The subtraction of Equation (1) from the above equation
represents whether there are changes in the measurements
and the states. The resultant equation will be as follows:

ΔPL
i = di(Δθfi −Δθei)

In this equation, ΔPL
i = P ′L

i − PL
i , Δθfi = θ′fi − θfi , and

Δθei = θ′ei − θei . If Δθfi �= 0 (Δθei �= 0), then it is obvious
that state xfi (xei) is changed (i.e., attacked). Similarly,
we have the following equation that indicates whether a bus
power consumption measurement is required to change:

∀1≤j≤b ΔPB
j =

∑

i∈Lj,in

ΔPL
i −

∑

i∈Lj,out

ΔPL
i

A.2 Formalization of False Data Injection
In order to launch an attack, the attacker must alter a set

of measurements, which depends on the changes that are
required to made on different power flows or consumptions.
When ΔPL

i �= 0, then it specifies that measurements i and
l + i (i.e., forward and backward power flow measurements
corresponding to line i), when they are taken (i.e., ti and
tl+i), are required to be changed. Similarly, the power con-
sumption measurement at bus j is required to change when

ΔPB
j �= 0. These are formalized as follows:

∀1≤i≤l (ΔPL
i �= 0) → (ti → ai) ∧ (tl+i → al+i)

∀1≤j≤b (ΔPB
j �= 0) → (t2l+j → a2l+j)

Conversely, measurement i is altered, only if it is taken
and corresponding power measurement is changed. The con-
straint is formalized as follows:

∀1≤i≤l ai → ti ∧ (ΔPL
i �= 0)

∀1≤i≤l al+i → tl+i ∧ (ΔPL
i �= 0)

∀1≤j≤b a2l+j → t2l+j ∧ (ΔPB
j �= 0)

A.3 Formalization of Attack Attributes
Limited Information. If the admittance of a line is un-
known to the attacker, then she cannot determine the nec-
essary changes that she needs to make in the measurements
associated to the line. We formalize this condition as follows:

∀1≤i≤l (ΔPL
i �= 0) → ((ti ∨ tl+i ∨ tfi ∨ tei) → gi)

Moreover, when the admittance of a line is perturbed (i.e.,
randomized), we consider that the admittance is unknown
to the adversary, although the actual admittance (we call
it as the base admittance) of the line may be known to the
adversary. The reason is that the changed amount is not
known to the adversary. The following constraint addresses
this point:

∀1≤i≤l hi → ¬gi
Limited Capabilities. If a measurement is data integrity
secured, then though the attacker may have the ability to
inject false data to the measurement, the false data injection
will not be successful. Hence, the attacker will only be able
to change measurement i in order to attack, if the following
condition holds:

∀1≤i≤m ai → ri ∧ ¬si
Limited Resources. The typical resource limitation spec-
ifies that, at a particular time, the attacker can inject false
data to TCZ number of measurements, at the maximum:

∑

1≤i≤m

ai ≤ TCZ

There can be a similar resource constraint with respect
to the number of buses that need to be accessed in order
to inject false data to the measurements residing at those
buses. The following conditions identify the buses which
need to be accessed:

∀1≤i≤l (ai → ufi) ∧ (al+i → uei)

∀1≤j≤b a2l+j → uj

Let TCB be the maximum number of substations that the
attacker can compromise simultaneously. Then:

∑

1≤j≤b

uj ≤ TCB

Specific Targets. The attacker most often has a target
of attacking a selected set of states. However, the attacker
usually has no specification on the rest of the states. That is,
an unspecified state might be attacked or not. If the target
is to attack states 3, 5, and 6, then it is specified as follows:

c3 ∧ c5 ∧ c6


