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Abstract—The Internet of Things (IoT) plays a significant role
in shaping different aspects of our lives. IoT devices have become
increasingly important due to their ability to connect, collect, and
analyze data, automate processes, improve safety and efficiency,
and deliver personalized experiences. However, the advancement
in quantum computer development poses a significant threat to
resource-constrained IoT devices. This new generation of com-
puters can break the classic public-key cryptographic schemes
and digital signatures implemented in these IoT devices. While
protecting IoT devices from quantum computer attacks poses
many challenges, researchers are continuously making significant
progress in developing lightweight post-quantum cryptographic
algorithms for efficient key exchange mechanisms and digital
signature algorithms tailored to IoT devices to overcome this
issue. This paper proposes Q-SECURE, a post-Quantum resis-
tant Security Enhancing Cryptography for Unified Resource-
constrained device Encryption. This novel scheme enables any
IoT system to leverage the assistance of other devices in the
network to gain the capability to generate any proposed post-
quantum cryptographic key of a given size using distributed and
parallel computing.

Index Terms—Post-Quantum, Internet of Things, Cryptogra-
phy, 5G-IoT technologies, Lattice-based, Isogenie, Key Encapsu-
lation, Key Generation.

I. INTRODUCTION

Internet of Things (IoT) devices, networked gadgets that can
interact and share data over the Internet, are becoming more
common today than ever. However, the rapid development
of quantum computers poses a security threat to these IoT
devices. The world is on the approach of a massive shift
in the realm of cybersecurity as quantum computing tech-
nology develops and advances [1]. Quantum computing can
undermine the cryptographic methods that have served as the
foundation of cybersecurity for decades [2]. As quantum com-
puters become more powerful, traditional encryption methods
will become vulnerable, compromising data security [3]. Post-
quantum security has evolved as a novel technique for encryp-
tion that can survive assaults from quantum computers in this
environment.

Researchers have been working on post-quantum security
techniques that can survive quantum computer assaults [4].
Post-quantum security is a novel concept of encryption that
employs mathematical problems thought to be difficult to
answer by both conventional and quantum computers. These
algorithms are meant to be resilient to quantum computer

assaults, assuring data security even if quantum computers
become widely available.

IoT devices are frequently developed with resource con-
straints in mind, as they are generally deployed in various
contexts where resources such as power, processing capacity,
memory, and network bandwidth may be restricted. Resource
restrictions are a key part of IoT device design and operation
and have consequences for their criticality. With the continu-
ous growth of 5G technology and the Internet of Things (IoT),
people rely more on using technology than ever before, e.g.,
for online shopping, marketing, social media, vehicles, home
appliances, etc. Nowadays, almost every piece of hardware
uses software to send or receive information. People have
adopted these systems because they guarantee all their online
activities’ confidentiality, integrity, and availability.

Classical cryptography provides the integrity and confiden-
tiality of all online activities. This security is made possible
with the use of prime numbers factorization and the discrete
logarithm (elliptic curve) cryptography that is used by RSA
(Rivest, Shamir, Adleman), ECDSA (Elliptic Curve Digital
Signature Algorithm), ECDH (Elliptic Curve Diffie-Hellman)
or DSA (Digital Signature Algorithm) [5]. However, many
security schemes the world has been relying on will soon
end with the advancement of quantum computers. Indeed,
Shor has discovered an algorithm that can easily break the
cryptography schemes in polynomial time [6]. This algorithm
runs on quantum computers that will be realized faster than
expected, with the current exponential growth in technology.

To attain high security for cryptographic approaches and
withstand future assaults from quantum computers, we need
new techniques incorporating both conventional cryptography
and quantum technology. In response to advances in the
development of quantum computers, in 2016, the National
Institute of Standards and Technology (NIST) launched a
competition for the new cryptography standard called Post
Quantum Cryptography (PQC). This competition is now in
the fourth round, and the new cryptographic standard will
be announced soon. More than one of the current contenders
is anticipated to be standardized, and these algorithms will
progressively take the role of RSA and ECC in applications.
The major challenges that PQC brings are large key sizes, large
signature and hash length, high computational complexity,
and high energy consumption. All of these contradict the



cryptographic schemes used for classic computers, and most
IoT devices possess slow computation power and energy.

Therefore, implementing post-quantum cryptography
schemes on IoT devices is still a big problem. Many
implementations of post-quantum cryptography on IoT
devices have been done. Some of these works are LATTICE-
based standards, such as the Streamlined Non-Truncated
Ring Unit (NTRU), where a Prime system with a given
recommended efficient multiplication design [7]; others use
the features of quantum walk to construct a new S-box
method, which plays a significant role in block cipher
techniques for 5G-IoT technologies, and the rest implement
Isogeny based cryptography. This is the case of “Secure Data
Encryption Based on Quantum Walk [8] for 5G Internet
of Things Scenario,” where the authors build a new S-box
approach that plays a big part in block cipher techniques
for 5G-IoT technologies using the characteristics of quantum
walk5, and “SIKE’d Up Fast Hardware Architectures for
Super singular Isogeny Key Encapsulation” in which the
authors carry out the complete SIKE procedure [9]. All the
approaches described above suppose the IoT device executing
the post-quantum procedure has sufficient computation
capability and enough power, which is not always the case in
many scenarios.

All the research in IoT security assumes that the devices
involved in generating a post-quantum cryptography key can
implement it on the software or hardware levels. None of them
had addressed how an IoT device could leverage the presence
of other IoT on the network to improve the computational time
in the key-generation process significantly. To our knowledge,
this is the first approach to improve the post-quantum cryptog-
raphy implementation on low-power IoT devices. In summary,
our main contribution to this paper consists of the following:

• Improve the computational time in the key-generation
process for a post-quantum cryptographic scheme by
introducing our client-helpers framework.

• Providing all IoT devices the capability to implement
any post-quantum cryptographic scheme by leveraging
the computational power of other devices on the network.

• Protecting low-power IoT devices from attacks by quan-
tum and classical computers by making them more re-
silient to such attacks.

All the code and its implementation and evaluation results can
be reproducible with our source code available on GitHub.1

The remainder of the paper is organized as follows: in Sec-
tion I, we present an overview of post-quantum cryptography
and its protection against attacks from quantum computers. A
summary of the literature review is presented in Section II.
In section III, we describe our model, in Section IV we
present the technical details of the implementation. We share
a case study to provide insight into our suggested scheme’s
working principles and capabilities in Section V. Then, we
demonstrate the validation with an actual prototype testbed
scenario. The following section evaluates our scheme using the

1https://github.com/lerice1/IOT--Quantum-Resistant-Security

quantum-resistant code-based key cryptosystem. We present
the conclusion and future work in Section VII.

II. RELATED WORKS

Internet of Things (IoT) devices are becoming more com-
mon, but their increased use poses security issues. The threat
presented by quantum computers, which can break many of the
cryptographic protocols now used to safeguard IoT devices, is
a specific source of concern. To solve this issue, researchers
have been working on post-quantum cryptography algorithms
that are supposed to be safe even against quantum computer
assaults [10][11]. Before proposing our approach, we examine
the state of the art in post-quantum security for IoT devices.

Despite the promise of post-quantum security, several chal-
lenges must be overcome before these algorithms can be
widely adopted. One of the most difficult issues is the neces-
sity to create new post-quantum security standards [4]. The
National Institute of Standards and Technology (NIST) has
led the work to draft these standards, although finalization
and adoption will take several years. Meanwhile, there is a
risk that quantum computers will be used to break existing
encryption methods, jeopardizing sensitive data security.

One of the major issues in protecting IoT devices with
post-quantum cryptography is the devices’ limited processing
capacity. This is the case in [12] where the authors present
a post-quantum public key cryptosystem that is lightweight
and tailored for IoT devices. Based on the RLCE method,
the suggested cryptosystem is intended to be computationally
efficient and immune to quantum attacks. Many post-quantum
algorithms are computationally demanding and necessitate a
significant amount of processing power and memory, which
can be difficult for resource-constrained IoT devices. To
solve this issue, many researchers have proposed lightweight
post-quantum cryptography algorithms targeted for IoT de-
vices [13][8][14][8][7][15]. The NIST Lightweight Cryptog-
raphy project, for example, is working on a set of lightweight
post-quantum cryptographic algorithms that are intended to be
deployed on resource-constrained devices [10][11].

Another problem in using post-quantum cryptography to
secure IoT devices is the necessity for effective key distri-
bution techniques. Many post-quantum algorithms necessitate
the exchange of large keys, which can be difficult in IoT
networks with limited bandwidth [5][16]. To overcome this
issue, academics have worked on efficient key exchange sys-
tems tailored particularly for post-quantum cryptography. The
NewHope [17] key exchange method, for example, is a post-
quantum key exchange mechanism meant to be efficient on
low-bandwidth networks.

The necessity for secure firmware upgrades is a related
difficulty in protecting IoT devices using post-quantum cryp-
tography. Many IoT devices are vulnerable to attacks that take
advantage of flaws in their firmware, which can be difficult to
secure updates [15]. Researchers have been working on secure
firmware update procedures that leverage post-quantum cryp-
tography to assure the integrity and authenticity of firmware
upgrades in order to address this difficulty[18]. For example,

https://github.com/lerice1/IOT--Quantum-Resistant-Security


the NIST Post-Quantum Cryptography Standardization project
is a significant initiative aiming at creating and standardizing
post-quantum cryptographic algorithms that may be used to
protect IoT and other post-quantum applications [19]. Other
research efforts are focused on developing post-quantum cryp-
tographic primitives, such as signature schemes, key exchange
protocols, and encryption schemes, that are optimized for
use in the resource-constrained environment of the Internet
of Things. Lattice-based cryptographic schemes, which are
noted for their efficiency and security, and code-based systems,
which are supposed to be resistant to quantum assaults, are
two well known examples. Overall, there is a growing corpus
of research aiming at building workable and efficient post-
quantum cryptography solutions that may be utilized in the
future to protect IoT and other applications.

However, all of these researches focus mainly on the hard-
ware level or the application level main that these devices
must be capable of generating post-quantum cryptographic
schemes on their own. In contrary, our approach leverages
the presence of any computing devices on the network, and
the implementation of the ”zero trust” security model. We
presume that all devices and users, whether inside or outside
a network’s perimeter, should not be trusted automatically. In
other words, zero trust demands that every device or person
seeking to access a network or a resource, regardless of
location or status, be validated and allowed.

III. SCHEME DESCRIPTION

In this section, we discuss the proposed scheme in detail.

A. Scheme Overview

This section will provide an overview and a description of
our framework. Our framework consists of a client-helpers
architecture model, in which the IoT (Client) device solicits
the computation power of other IoT devices (Helpers) to
speed up the post-quantum cryptography key-generation and
encapsulation processes. We will refer to the IoT generating
the post-quantum cryptographic key as the client, and other
IoTs helping in the key generation process as helpers. We
assume that all communications are encrypted using any
specified post-quantum cryptographic scheme. We also assume
that there are always more than two devices in the network.

When the client wants to start communication with any
devices on or outside the network for the first time, it sends
out requests to check the availability of other devices on
the network. Other devices on the network (helpers) reply
to the request by confirming their availability to provide the
computation help to the client. The client generates the size
of the key, splits it into multiple parts, keeps half the number
of parts, and randomly sends the rest to some helpers on the
network for computation. We use the example of McEliece
Post-Quantum Cryptosystem where the private key of any IoT
client is a combination of three matrices S , G , and P . S is a
non-singular k×k matrix, referred to as the scrambler matrix.
G is a n×k matrix with binary linear block code over GF (2 ),

Fig. 1. The Client randomly selects a subset of helpers to assist in the key
generation process

with the capacity of being able to correct up to t errors with
the n − k parity bits [20].

This process can be done in the case of many post-
quantum cryptographic schemes such as Non-truncated Ring
Unit (NTRU), Learning with Error (LWE), and Isognie post-
quantum public key generation mechanisms. The key size is
critical because a small key size will cause the algorithm to
be insecure against quantum attacks. A large key will take a
long time to generate and consume too many system resources
(memory, power, and processor), especially for IoT devices.
With all these challenges in mind, we created a framework that
will give any IoT device the capability to accomplish the key
generation and encapsulation processes of any post-quantum
cryptographic scheme of any size with less time and resource
consumption, as shown in Fig. 1 that shows that not all the
devices are selected by the client in this process.

B. The divide and Conquer Algorithm

We use the divide and conquer algorithm for any post-
quantum cryptography key generation process alongside the
zero trust security model which allows us to assume that
all devices and users, whether inside or outside a network’s
perimeter, should not be trusted automatically. When the zero
trust model is applied to IoT devices, each device must be
verified and permitted before it can connect with other devices
or use network resources. This necessitates the identification
and verification of each device, as well as the application of
access control policies to define what actions the device is
permitted to conduct within the network.

In Algorithm 1, we considered a key generation mechanism
in which the client IoT uses a large key big enough for
the single IoT client to efficiently generate with a limited
time constraint. The divide and conquer algorithm below
provides an effective method to break down the task into
smaller tasks. Every IoT device has a specified or defined
capability threshold T that provides information on how much
computation it can handle or support at any given time. This



Algorithm 1: Divide and Conquer the Matrix
1 Function DivideAndConquerProblem(P):
2 P ← Data
3 if P < T then
4 Solve the problem P directly
5 end
6
7 else
8 while P > T do
9 Divide the problem into smaller four

subproblems, SP1, ..., and SP4;
10 solution← Merge (DivideAndConquer(SP1),

. . . , DivideAndConquer(SP4))
11 end
12 end
13 return

variable depends on the available memory, CPU frequency, etc.
Algorithm 1 depicts clearly how this is done using a divide
and conquer approach. The key operation in this pseudocode
is DivideAndConquer, which accepts a problem as input. It
determines if the problem is modest enough to be solved
immediately. If so, it immediately addresses the problem.
Otherwise, it divides the issue into smaller subproblems, per-
forms the DivideAndConquer technique on each subproblem
recursively, then combines the subproblem solutions to achieve
the final answer. After that, the final solution is returned.

C. Network Agnostic

IoT (Internet of Things) networks are a pivotal component
of the modern digital landscape, enabling a wide range of
devices to connect and communicate over the internet. One of
the key advantages of our design is that many IoT devices are
built with network capabilities. This provides our system with
the ability to enhance efficiency and convenience[21].

Our system is network agnostic. This proposed solution will
work on any network. We implemented our prototype on the
WIFI network. Our solution is designed to be IoT network
agnostic, meaning it can be implemented on any type of IoT
network, whether it is a LoRaWAN, NB-IoT, Zigbee, or any
other standard. Our approach is adaptable and compatible with
a wide range of IoT communication protocols. This flexibil-
ity ensures that our solution can seamlessly integrate with
various existing and emerging IoT infrastructures. However,
the choice of the network should depend on factors such as
range requirements for the network, power constraints, and
cost considerations.

IV. TECHNICAL IMPLEMENTATION

In the following section, we will go through the scheme’s
implementation.

A. System Overview

The main idea is to speed up the key generation and
encapsulation processes on IoT resource-constrained devices.
Because most post-quantum cryptographic schemes use large
keys to maintain the security resistance of the system and data

against Indistinguishable under Chosen-Plaintext Attack (IND-
CPA) [22][23]. The larger the key, the more resistant it is
against attacks, and the harder this key is to be generated by
low computational power IoT devices on the network. The
importance of IoT devices may be understood from numerous
angles. Below are some of the main four.

Power Management. IoT devices are frequently battery-
powered or operate in inaccessible or distant regions with
restricted power sources. Power consumption management is
crucial for guaranteeing the lifetime and dependability of IoT
devices. Low-power modes, sleep modes, duty cycling, and
energy harvesting are popular techniques used to optimize
power consumption and extend the operating life of IoT
devices [24].

Bandwidth and Network Connectivity. Depending on
the deployment context, IoT devices may have restricted
network access, such as low bandwidth, inconsistent connec-
tivity, or excessive latency. This can have an impact on IoT
devices’ real-time data transfer, reaction time, and overall
performance. For IoT devices to function successfully in
resource-constrained network contexts, efficient data transfer,
data compression, and adaptive communication protocols are
required [25][26].

Fault Tolerance and Resilience. IoT devices working in
resource-constrained contexts must be resilient to a wide range
of failures and faults, including hardware breakdowns, network
interruptions, and data corruption. Fault tolerance methods,
redundancy, error recovery, and robust data processing are
critical for assuring IoT device dependability and availability
in resource-constrained contexts [27][28].

Processing Capacity and Memory. Because of their com-
pact form size and resource restrictions, IoT devices may
have limited processing capability and memory. Because IoT
devices must work within certain constraints, this might have
an influence on their performance and usefulness. Optimizing
algorithms, data processing, and memory use is critical to
ensure IoT devices operate efficiently in resource-constrained
contexts [29][30].

B. Technical Implmentation

To maintain the same security level when implementing
post-quantum cryptography IoT devices, we created a system
that leverages the computation power of any IoT device by tak-
ing advantage of other devices and systems on the network. We
leveraged a parallel and distributed computing environment
that permits low computation and energy power IoT devices
on the network to send parts of their key generation and
encapsulation process to a subset of devices on the network.

To accomplish this strategy, we implemented our scheme
on top of the Dispycos parallel and distributed computing
framework[31]. This Python-based framework allows for dis-
tributed computing using asynchronous programming, where
tasks are distributed across multiple nodes in a cluster or
network. It is built on top of the popular Dispy framework,
which allows for parallel execution of Python code across
multiple CPUs or nodes in a network. Dispycos framework



Fig. 2. The flow diagram shows different steps that a client takes in the key
generation process

extends the functionality of Dyspy by adding the ability
to write asynchronous code using the ”asyncio” library in
Python [32]. This allows for efficient use of resources in a
distributed environment, as well as the ability to write complex
distributed programs.

We used the Dispycos framework to create computing nodes
on the network that can run on separate devices and then
submit tasks to these nodes that we call helpers for execution.
These tasks are parts of the post-quantum key generation
functions that can be executed asynchronously, and using the
framework, we distribute the tasks to the available nodes
and the communication among these nodes. The results are
returned to the IoT device (client) that needed the help to
execute the code for key generation or encapsulation.

We also implemented the zero-trust security model approach
in which all devices and users, whether within or outside
a network’s perimeter, are not immediately trusted. In other
words, zero trust demands that every device or person seeking
to access a network or a resource, regardless of location or
status, be validated and then allowed. In this model for IoT
devices, security controls are enforced at the network and
device level perimeters. This means that each device should
have its own security controls in place to ensure that it is not
vulnerable to attack, and it is properly configured to adhere
to the network’s security policies. Zero trust for IoT devices
also requires continuous monitoring and visibility into device
activity, as well as rapid response capabilities to mitigate any
possible security incidents.

We combined this with the divide and conquer algorithm
that helps us break down the inversion of larger matrices

into smaller, more manageable sub-matrices, solving each sub-
matrix independently and then combining the solutions to the
sub-matrices to solve the original matrix. This approach is
often used when a problem is too complex to be solved in a
straightforward manner. Therefore, the problem is divided into
smaller parts that are easier to solve. Each of these smaller
parts can be solved independently, using the same algorithm
or a different one, and the solutions are combined to obtain the
final solution. The divide and conquer algorithm is commonly
used in various fields such as computer science, mathematics,
and engineering to solve problems such as sorting, searching,
and matrix multiplication [33]. Fig 2 illustrates this approach.

C. Implementation

This divide and conquer method accepts an array A, a left
index l, and a right index r as input. It initially determines if
the left and right indices are equal. If so, the method returns
the element at index l . Otherwise, the array is divided in half
at index m = (l + r)/2. It then recursively calls itself on both
the left and right halves of the array. Finally, the results of the
two recursive calls are combined.

For the implementation, we utilized four Raspberry Pis,
which we had installed Ubuntu 20.04 LTS Desktop. One of
the Raspberry Pis is configured as a client node, while others
are configured as helper nodes, as shown in Fig 3.

Fig. 3. The setup of our system on Raspberry Pi

We chose the Raspberry Pis because these were the closest
to the IoT devices we could access. However, the same code
can run on other low-computational power IoT devices.

V. CASE STUDY

In this section, we use the example of McEliece Post-
Quantum Cryptosystem where the private key of any IoT client
is a combination of three matrices S , G , and P . S is a non-
singular k × k matrix, referred to as the scrambler matrix. G
is a n × k generator matrix that can correct up to t errors on
a binary linear block code over GF (2 ). this means G is able
to correct up to t errors with the n − k parity bits [20].

The McEliece cryptosystem is based on the difficulty of
decoding a randomly generated linear code. The fundamental
concept is to encode a message as a vector and then add



random mistakes to the vector. The vector that results is then
broadcast through a noisy channel. By correcting the vector
flaws, the receiver can decode the message. The McEliece
cryptosystem’s security is predicated on the difficulty of de-
coding a random linear code. This challenge is considered
computationally infeasible for both classical and quantum
computers if the code is sufficiently long and the errors are
randomly sampled.

Our main goal is to perform the computations involved in
the key generation process using the three matrices S , G , and
P . This process corresponds to the McEliece private key and
public key generation, respectively. Algorithm 2 below shows
the pseudocode for the divide and conquer algorithm in the
case of McEliece post-quantum cryptography.

Algorithm 2: Divide and Conquer Algorithm for
McEliece Key Generation.

1 block size b (power of 2), number of levels l (such that bl is
the dimension of the code)

2 random generator matrix G
3 Function DivideandConquer(M):
4 if ← 0$ then
5 return random b× b matrix M
6 end
7 return
8 else
9 M1 ← GenerateMatrix[i− 1]

10 M2GenerateMatrix[i− 1]
11 Divide M1 and M2 into b× b submatrices
12 end
13 for j ∈ range(bi) do
14 for k ∈ Range(bi) do
15 Nj,k ← randomb× bM
16 end
17 end
18 Pj,k ← Nj,kM1 +Nj,k+biM2 for 1 ≤ j, k ≤ bi

19 Combine Pj,k into a single bi × bi matrix M
20 return M

A. Key Generation Process
The generator matrixG is created for a binary linear code

as part of the McEliece key creation procedure, and a random
error is then added to the matrix to obtain a public key. This
process could be improved by computing the private key as the
collection of P ,G , andS , and the public key G is the product
of these private key matrices (P × G × S ) using the divide
and conquer approach. By recursively splitting the matrix into
smaller submatrices and creating random matrices for each
submatrix, the divide and conquer technique can be used to
build a random generator matrix. The random generator matrix
for the full matrix may be created by combining the random
matrices. This algorithm performs as below:

• Select a level of l and a block size b, a power of two
such that bl is the code’s dimension.

• For each leaf node of the recursion tree, produce a random
b× b matrix.

• Combine the matrices from the prior level to get a new
set of matrices in three steps. i) Create b× b submatrices

from the parent matrix, ii) Produce a random b×b matrix
to make a new submatrix for every pair of submatrices,
and iii). Create a new matrix for the current level by
combining the new submatrices.

• The ultimate generating matrix for the code is the root
of the recursion tree.

This approach may be used to construct a random generator
matrix for a binary linear code, which can subsequently be
used to generate a McEliece public key. Because the divide
and conquer approach assures that the matrix is more random
and has a better structure, the resultant key is safer than a
key created using a fundamental random matrix. However, this
approach may need more processing resources than a simple
random matrix-generating algorithm.

Algorithm 3: MatrixInverse
Data: Matrix A of size n× n
Result: Inverse matrix A−1

1 if n = 1 then

2 return
[

1
A11

]
3 else
4 Divide A into four sub-matrices A11, A12, A21,

and A22;
5 B11 ← MatrixInverse(A11);
6 B22 ← MatrixInverse(A22);
7 B12 ← −B11 ×A12 ×B22;
8 B21 ← −B22 ×A21 ×B11;
9 C ← B22 +B22 ×A21 ×B11 ×A12 ×B22;

10 D ← B11 +B12 × C ×A21;
11 E ← B22 × (A11 −A12 ×B−1

22 ×A21)
−1;

12 F ← −B12 × C × E;
13 G← −B22×A21×B11×(B22×A11−A12×B21)

−1;
14 H ← E ×A12;
15 I ← B12 × C ×H; J ← E ×A21;
16 K ← G×A12;
17 L← G×A21;
18 M ← B22 × J +B22 × L×B11;
19 N ← D − I; O ← J ×M ;
20 P ← −G×M ;
21 Q← F ×N ;
22 R← D +Q;
23 S ← J ×R;
24 T ← −G×R;
25 U ← O + S;
26 V ← P + T ;
27 W ← G× U ; X ←W −H;
28 Y ← V −K;

29 return
[
X Y G E

]
;

This technique employs a recursive approach to compute the
inverse of a matrix A. When the matrix has the size of one,
the inverse is just the reciprocal of the solitary element in the
matrix. Otherwise, the matrix is divided into submatrices, and
the inversion of these smaller matrices is computed recursively.



TABLE I
PRIMARY DIFFERENCES BETWEEN THE EXECUTION IN A SINGLE

RASPBERRY PI AND EXECUTION ON THREE RASPBERRY PI.

Matrix size
(n x n)

Execution time Single
Raspberry Pi in Second

Execution time in three
Raspberry Pi in Second

64 0.74158087267151 0.707228292465
128 6.4137382420104 5.8750646697256
256 53.956084489822 40.759545955444
512 288.46228933334357 199.762945595544
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Fig. 4. The execution time at different number of devices (Raspberry Pis).

The inversed submatrices are then concatenated using matrix
operations to generate the original matrix’s inverse.

VI. EVALUATION

This part summarizes the findings from the system under
consideration and the practicality of applying our suggested
model. As described in Section IV, we developed a post-
quantum scheme that enables IoT devices to generate any
post-quantum cryptographic key regardless of the key size.
We evaluated our system on three aspects: the execution time,
the optimal number of devices, and the submatrix threshold
size (i.e., the smallest size until which our algorithm keeps
dividing a matrix).

A. Impact of the Matrix Size on the Execution Time

Since McEliece’s post-quantum cryptography key-
generation and encapsulation processes depend much more
on the matrix multiplications and inverses, we simulated
a program that works in that regard. Table I shows the
computational time of execution on one IoT device versus
three IoT devices. From Table I, we can derive that the
computational time on a single Raspberry Pi is consistently
getting slower compared to the one on three Raspberry
Pis. This result allows us to confidently conclude that our
proposed scheme, Q-SECURE, improves the computation
time when using multiple IoT devices on a distributed and
parallel computing network system.

The same conclusion is seen in Fig. 4. The execution time
on a single Raspberry Pi is higher than on our Q-SECURE
environment distributed with three Raspberry Pi.
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Fig. 5. The key generation time in different numbers of devices.
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Fig. 6. The optimal number of devices for different matrix sizes.

B. Impact of the Number of Devices on the Execution Time

The next part of our evaluation is to find the optimal
outcome (number of IoT devices) needed to accomplish a
specific task in the shortest time possible. To realize this, we
set up a network with different devices (Raspberry Pis and
Virtual machines). The Virtual machines are configured with
less computing power and low memory to match those of
Raspberry Pis as closely as possible. Our exploration shows
that for a specific matrix size, there should be a predefined
number of IoT device helpers that the client must request to
minimize the execution time. The result is presented in Fig. 5.
In this case, we defined a squared matrix M of size 256. Fig. 5
shows that we must use four devices (three IoT helpers and
one client) to compute a key generation of size 256 in about
40.2 seconds.

From our experimental results in Fig. 5, we identify the
optimal number of IoT devices for different matrix sizes with
the lowest execution time. This information is presented in
Fig. 6, where the optimal number of IoT devices needed
increases with the increase in the matrix size.

C. Impact of Submatrix Size Threshold on the Execution Time

The optimal submatrix matrix size (that we refer to as
threshold) is the size M of the input matrix that triggers our
program’s divide and conquer algorithm. A threshold is an
arbitrary option that can change depending on the hardware
and the size of the matrices for which the determinant and



inverse are to be computed. In general, the threshold should
be adjusted so that, for smaller matrices, the recursive calcu-
lation is quicker than the lower triangular matrix (L) and an
upper triangular matrix (U ) factorization, also known as LU
decomposition. Still, it is not so big that memory or processing
time becomes a barrier for larger matrices.

VII. CONCLUSION

Post-quantum security is an important field of study for
protecting IoT devices from quantum computer assaults. While
there are many challenges to overcome in this area, researchers
are making significant progress in developing lightweight
post-quantum cryptographic algorithms, efficient key exchange
mechanisms and secure firmware update mechanisms tailored
to IoT devices. In this work, we put our attention on imple-
menting post-quantum schemes on resource-constrained Inter-
net of Things devices and effectively improving their compu-
tational efficiencies by leveraging the power of distributed and
parallel computing of devices on the same network.

This work does not cover all the possible ways of improving
the computation power of IoT devices when it comes to imple-
menting such algorithms. For instance, one approach this paper
could improve is that all devices present on the network do not
have the same computation power and other characteristics that
should be taken into consideration when distributing the work
to different helper nodes. In the future, we will address this
heterogeneity issue. Additionally, there is a need to implement
different post-quantum cryptography systems and the impor-
tance of conducting rigorous assessments that could help in
choosing the appropriate post-quantum cryptography scheme
that will minimize resource consumption in accordance with
the IoT device specifications and constraints.
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