
Secure Distributed Solution for Optimal Energy
Consumption Scheduling in Smart Grid

Mohammad Ashiqur Rahman, Libin Bai, Mohamed Shehab, and Ehab Al-Shaer
University of North Carolina at Charlotte

Emails: {mrahman4, lbai2, mshehab, ealshaer}@uncc.edu

Abstract—The demand-side energy management is crucial to
optimize the energy usage with its production cost, so that the
price paid by the users is minimized, while it also satisfies
the demand. The recent proposed solutions leverage the two-
way communication infrastructure provided by modern smart-
meters. The demand management problem assumes that users
can shift their energy usage from peak hours to off-peak hours
with the goal of balancing the energy usage. The scheduling
of the energy consumption is often formulated as a game-
theoretic problem, where the players are the users and their
strategies are the load schedules of their household appliances.
The Nash equilibrium of the formulated game provides the
global optimal performance (i.e., the minimum energy costs).
To provide a distributed solution the users require to share
their usage information with the other users to converge to
the Nash equilibrium. Hence, this open sharing among users
introduces potential privacy and security issues. In addition,
the existing solutions assume that all the users are rational
and truthful. In this paper, we first highlight the privacy and
security issues involved in the distributed demand management
protocols. Secondly, we propose an efficient clustering based
multi-party computation (MPC) distributed protocol that enables
users to share their usage schedules and at the same time preserve
their privacy and confidentiality. To identify untruthful users, we
propose a mechanism based on a third party verifier. Through
simulation experiments we have demonstrated the scalability and
efficiency of our proposed solution.

Keywords: Smart Grid, Energy Consumption Schedule, Privacy.

I. INTRODUCTION

Energy is critically important for residences and factories.

With the booming of the population and the need of electrical

energy, increasing efficiency becomes an important issue. A

recent report from U.S. Department of Energy [2] states that

in the Unites States almost two-fifths of the total electricity is

consumed in households. However, the energy use is not effi-

cient. The distribution of energy consumption rate in different

hours of the day is not even. The peak usage of electricity

(between 6pm to 7pm in U.S.) is much higher than the off-

peak periods. The peak value of electricity consumption data

is extremely important for electric companies as the generation

capacity of their power plants must be higher than the peak

value. If some loads from the peak-periods can be shifted to

the off-peak periods, the power company would be benefited

by the reduction of the cost of improving the power plant

capacity. This will also result in the decrease of the price

of electricity. Controlling the energy usage at the customer

side of smart meters has received a lot of attention. Some

research (e.g., [3], [8]) has been made to minimize the cost

of production with the indirect interaction between the energy

users (i.e., the customers) and the energy provider, especially

considering varying energy prices, giving incentive for using

energy at off-peak hours.

Smart grids provide innovative and efficient energy man-

agement services that offer operational reliability and value-

added advantages to both users and energy providers. The

potential market for smart grids show that it will be the most

widely deployed critical infrastructure in the 21st century.

The popularity of smart grids is followed mainly from the

advent of smart meters. Smart meters give the opportunity of

two-way communication between the meters and the utility

servers through the intelligent collectors [4]. This opportunity

gives the researchers an opportunity to rethink for the optimal

demand side management. In [7] and [5], researchers propose

electricity scheduling methods to reduce the peak-to-average

ratio (PAR) of the energy usage by introducing some flexible

electricity price functions. These methods depend on the

response of the users to the time-differentiated prices by

shifting their load from the peak hours to the off-peak hours.

These works focus on the household users, particularly the

household appliances, which are flexible in their usage time,

and hence one can shift the usage time from peak time to

off-peak time to reduce the energy cost.

Mohsenian-Rad et al. in [1] proposed an autonomous and

distributed demand-side energy management system among

users that takes advantage of the communication infrastructure

among the smart meters. A game-theoretic model is applied

to formulate the energy consumption scheduling problem. The

Nash equilibrium of the game gives the maximum payoffs

to the users. As a by-product of this algorithm, the peak-to-

average ratio of the energy demand is reduced. However, there

are several security problems in this optimization algorithm.

In this paper, we propose a solution to solve these problems.

A. Motivation

The distributed algorithm for the optimization of the en-

ergy consumption schedule requires a user to broadcast its

hourly usage information to the other participating users.

This interferes with the privacy problem. Each user’s energy

consumption behavior is revealed to participants, which might

be considered private. As the participating users possess

various characteristics and they are mostly unknown to each

other, privacy is an important matter. The algorithm is also

susceptible to false data injection and replay attacks. Due to

2012 IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications

978-0-7695-4745-9/12 $26.00 © 2012 IEEE

DOI 10.1109/TrustCom.2012.252

279

2012 IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications

978-0-7695-4745-9/12 $26.00 © 2012 IEEE

DOI 10.1109/TrustCom.2012.252

279

Fig. 1. The communication network between the smart meters.

these attacks, the optimization algorithm can come up with a

result, which is different from the actual optimal result. As a

result, the participating users after optimization may not get

the expected benefit, rather they can end up paying much more

than the regular price.

There are some more problems with the optimization algo-

rithm. Firstly, some participating users may lie (i.e., defect)

about their energy consumption behaviors. Though such de-

fection will not give the global optimal benefit, one might be

motivated to do this if he can find better (individual) incentive

than being truthful. Second, the algorithm is not time-efficient

as the algorithm requires a user to communicate all other users

repeatedly until the global optimization is reached. Therefore,

with the number of users, the time required for the convergence

increases rapidly.

B. Contribution

We propose a mechanism for optimizing energy cost that

meets the security challenges and performs efficiently. The

solution is developed on top of the typical energy consumption

scheduling model, which offers the following contributions:

• We propose an efficient secure multi-party computing
(MPC) solution to preserve the privacy and security

of the usage schedules. We have adopted the energy

consumption scheduling model and management protocol

proposed in [1] as a use case.

• We enhance the efficiency of the distributed demand

management protocol by clustering the participants and

executing the optimization protocol over the clusters.

• We show with a scenario that a participating user can

benefit by telling lies about its usage. We propose an

assumption at which there is no incentive from defecting.

We devise an adjudicator (i.e., a truthful third party

verifier) based solution in order to ensure the truthfulness

of the participating users.

• We demonstrate the scalability and efficiency of our

proposed solution by executing simulation experiments.

The rest of this paper is organized as follows. We briefly dis-

cuss the demand management problem and its formalization in

Section II. We present our proposed solution in Section III. In

Fig. 2. A quadratic convex and increasing cost function.

the following section, we present the simulation experiments

and evaluation results. In Section V, we describe the related

work. We conclude the paper in Section VI.

II. ENERGY COST MINIMIZATION MODEL

We begin the section by describing the smart power system

and the electric consumption price model. Then we briefly

introduce the energy consumption scheduling optimization and

the corresponding distributed algorithm accordingly.

A. Energy Consumption Model

The smart power system that we assumed in this paper is

shown in Fig. 1. The energy source provides the energy to

the users by power lines. Each user is equipped with a smart

meter. The smart meters are connected though the power line

communication media (or Wi-Fi) and it forms a Local Area

Network (LAN). The meters communicate with each other by

appropriate communication protocol. The energy provider is

also connected to the LAN. Each smart meter has an energy
consumption scheduling (ECS) unit, which is capable of doing

some arithmetic computation/processing.

The electricity cost function is defined as Ch(Lh), where

Lh is the hourly consumption of electricity and Ch(.) returns

the cost of consumed electricity at time h ∈ H. H denotes the

set of the time slots in a day. The unit cost can be different

at different time which depends on the total electrical usage

of all the users. Generally, the unit electrical cost at night is

lower than the electrical cost during the day time. The cost

equation is a strictly increasing function as follows:

Ch(b) < Ch(c), ∀b < c (1)

The cost function is strictly convex.

Ch(θb+ (1− θ)c) < θCh(b) + (1− θ)Ch(c),

∀b < c, 0 < θ < 1
(2)

A simple cost function is shown in Fig. 2. This is a quadratic

cost function as defined in the following equation:

CLh

h = ahL
2
h + bhLh + ch (3)

In Equation 3, ah > 0, bh > 0, and ch > 0 are the constants.

280280

Fig. 3. An example of individual usage vectors of three users and
corresponding summation usage vector.

The set of users are denoted as N. The number of users is de-

fined as N (i.e., N = |N|). The vector ux =
[
u1
x, u

2
x, ..., u

24
x

]
denotes the usage vector for a user x ∈ N in 24 hours

(i.e., H = {1, 2, ..., 24}), where uh
x denote the hourly con-

sumption of x at the time h. Hence, the summation of the

usage vectors of all the users is denoted as follows:

u =
[
u1, u2, ..., u24

]
=

[∑
x∈N

u1
x,
∑
x∈N

u2
x, ...,

∑
x∈N

u24
x

]
(4)

The summation is also a vector, which is named as the sum-
mation usage vector). Fig. 3 shows an example of individual

usage vectors and corresponding summation usage vector. The

total cost of all the users is defined as follows:

S =
∑
h∈H

Ch(u
h) (5)

where the uh is the hourly usage of all users at time h ∈ H .

For each user x ∈ N, we define the set of household

appliances as Ax. Each appliance a ∈ Ax has an individual

daily usage vector:

ux,a =
[
u1
x,a, u

2
x,a, ..., u

24
x,a

]
(6)

The usage vector of a user x ∈ N is the summation of the

usage vectors of all appliances:

ux =
[
u1
x, u

2
x, ..., u

24
x

]
=

[∑
a∈A

u1
x,a,,

∑
a∈A

u24
x,a

]
(7)

The peak-to average ratio (PAR) is defined as follows:

PAR =
maxh∈Huh∑
h∈H uh/|H| (8)

B. Energy Consumption Scheduling Game

The energy consumption scheduling game is defined below:

• Players: The registered users in set N.

• Strategies: Each user x ∈ N finds its energy usage vector

ux to maximize its payoff considering the usage of other

users (u−x).

• Payoff: The payoff function is defined as:

Px(ux;u−x) = − ux∑
x′∈N ux′

∑
h∈H

Ch(u
h) (9)

The overall usage vector changes with a change in ux. It

has been proved that once the game has no change, the game

reaches a fixed point, which is the Nash equilibrium [1]. At this

point, no user will get benefit by choosing other scheduling.

A distributed algorithm is executed between the partici-

pating users by the corresponding ECS units. In the rest of

the paper, we will use the word ’node’ to represent a unit.

Each node x executes the local optimization randomly. Each

execution process consists of the following three steps:

1) The node x solves local optimization by solving Equa-

tion 9 by applying some known optimization algorithm.

2) If x finds that the optimization algorithm results a con-

sumption schedule different than its earlier consumption

schedule ux, it updates ux and broadcasts a control

message to announce the updated ux to other nodes.

3) When a node x̄ (x̄ �= x) receives the control message,

it updates the summation usage vector accordingly.

A node continues to execute the process at different random

times until there is no new control message for a while. At

this point, the algorithm converges to the optimal point.

We have found several problems in this algorithm. Firstly,

the distributed algorithm requires the broadcasting of the usage

vector by each node. This broadcasting message is also sent

as a plain text. This introduces the privacy problem along

with the following security problems: (i) the usage vector of a

user can be eavesdropped by listening to the communication

media, and (ii) an adversary can inject false data in order

to fail the optimization. Secondly, the convergence cost of

the optimization algorithm is high. The average time of the

algorithm is O(NM), where N is the number of participating

nodes and M is the number of rounds required for the

convergence. For a large N , M also becomes very high. As

a result, the implementation of this algorithm is infeasible for

large number of users. The main reason behind this is the

large number of messages that are required to exchange in

the network back and forth till the convergence (as one node’s

optimizing decision, which is local to it, affects the decision of

the other nodes). The low computational capability of a smart

meter is also important to consider. Each optimization round

is expected to take a significant processing time. Therefore,

this algorithm is not suitable to be implemented in a large

scale. Another problem of this method is that the truthfulness

of the participating nodes in the optimization are not ensured.

A participating node can cheat about its usage vector to get

advantage. An example of this is presented in Section III-C.

III. PROPOSED SOLUTION

In this section, we describe our solution in two steps. First

we describe how we address the security issues, i.e., the

privacy preservation and the protection against false data injec-

tion. Next we present the mechanism we apply to increase the

scalability of the solution. We end the section by discussing the

truthfulness issue of the nodes and by proposing a mechanism

for ensuring their truthfulness.

A. Security Incorporation

We propose a secure multi-party computing (MPC) algo-

rithm to resolve the privacy problem of sharing user data. In

281281

Fig. 4. The MPC technique for summing the usage vectors of the participating nodes that includes authentication and confidentiality security measures also.

our algorithm, a computing node runs the MPC algorithm

to know the summation of the usage vectors of all other

nodes before doing each local optimization. Although any

suitable MPC solution [12] could be adopted, we emphasize

the computational efficiency of the algorithm by proposing

a simple and light-weight protocol for secure MPC, which

is very important for the low processing power devices like

smart meters. In our approach, we mainly apply randomization

to maintain privacy. In order to prevent eavesdropping (i.e.,

confidentiality) as well as the injection of false data (i.e.,

authenticity), we use cryptography.

A node requires the aggregation of the usage vectors of all

the participating nodes for running local optimization. In our

solution, we run the MPC first to get the summation of the

usage vectors. An example execution of the technique is shown

in Fig. 4 for three nodes. The execution of MPC algorithm

is sequential like a ring. All the participating nodes create a

logical ring starting from the computing node and ending to

the same node. For a particular node, the logical ring is usually

different at different execution of local optimization. It is ran-

domly selected at the time of execution. The computing node

(e.g., x0 as in the figure) starts MPC by launching a message

containing its usage vector ux0 added with a random usage

vector R and its identity. The message is sent to an arbitrarily

selected node x1. The message is encrypted using the private

key of x0 (i.e., prx0), which follows by the encryption using

the public key of x1 (i.e., pbx1). When the node x1 receives

the message from x0, it decrypts the message. It receives the

summed usage vector (here R+ux0) and the nodes (here only

x0) which have added their usage vectors to the summation.

Now it adds its usage vector with R + ux0. Then it encrypts

the resultant usage vector firstly using its private key (i.e.,

prx1) and secondly using the public key of x2 (i.e., pbx2).

It sends a message comprised of the encrypted usage vector

and the identities of the nodes, which have added their usage

to the node x2 that is arbitrarily selected from the remaining

nodes (i.e., whose usage vectors are yet to add). In this way,

the message is received by a node after which there is no

node remaining to add to the summation. This node (here x2
according to the figure) adds its usage vector to the summation

and sends the message to the MPC initiating node (i.e., x0)

along with the list of participating nodes applying the same

encryption steps on the message. Note that at least three nodes

are required to participate in the MPC technique. In case of

two nodes, the MPC initiating node can easily figure out the

other node’s usage vector. The distributed algorithm for local

optimization of the usage vector executed by each node is

shown in Algorithm 1. Each node continuously executes the

local optimization at random time intervals. At each run, the

MPC algorithm is executed to get the summation of the usage

vectors of all users. A node stops executing any further round

of the local optimization process, when there is no significant

update in ux for a number of consecutive rounds.

Algorithm 1 Executed by each node x ∈ N.

repeat
if a random time instance to compute optimization then

Execute Secure MPC to get the summation S−x of all

the users’ usage vectors.

Solve local optimization Equation 9 of ux.

end if
until There is no significant update in ux for a number of

last consecutive rounds.

Importance of applying both encryptions. In this process,

each node (e.g., x0) at first encrypts the message using its

private key (e.g., prx0) and then encrypts the same using

the public key of the receiving node (e.g., pbx1). These

two encryptions are not required for secure MPC execution,

i.e., privacy preservation. If first encryption is not done, any

adversary can inject false data. If false data is injected, the

summation will not be the actual one, and thus the optimal

value will be incorrect. As a result, the nodes will not get

benefit from participating in the optimizing process. This

encryption is known as signing the message. In the case of

second encryption, if the message was not encrypted by the re-

ceiving node’s public key, anyone can eavesdrop the message,

which breaks the confidentiality. Though the message content

(i.e., the summation usage vector and the participating nodes)

does not help an adversary to launch an attack on the protocol,

282282

the MPC initiating node x0 can eavesdrop the messages, and

decrypt them to know the usage vectors of the other nodes. In

Fig 4, for example, x0 eavesdrops the message sent by x1 to

x2 and decrypts the message using the public key of x1 (as

it was not encrypted using the x2’s public key). Hence, it can

easily figure out the usage vector of x1. Similarly, from the

message sent by x2 to x0, it get the usage vector of x2 by

subtracting the usage vector of x1. If there are more nodes,

it can get the usage vectors of all the participating nodes

in MPC by eavesdropping all messages between the nodes.

The communication is also susceptible to replay attacks. The

random usage vector (R) also helps to get rid of such attacks.

Protection against sandwich attack. As a node selects the

next node after it in the logical sequence randomly at each

MPC execution, in case of a particular node the node sequence

in the ring is usually different than that of a different MPC

execution. Even the ring is not known when the execution runs.

This is done because, otherwise, a node can be sandwiched

by the two nodes before and after the node in the sequence in

order to learn its usage vector.

Importance of executing MPC at each local optimization.
The execution of MPC at each optimization process increases

the execution cost (i.e., time complexity) of our algorithm.

However, it is possible to execute the MPC only at the

beginning of the whole process, not at each local optimization

process. In this case, the computing node requires to broadcast

the updated summation usage vector to all other participating

nodes. At the time of executing each local optimization, a

node requires to use the latest summation usage vector. But

it raises a privacy issue again. Comparing the broadcasted

usage vector with the earlier vector, one node can understand

the changes done by the computing node. That is, for ex-

ample, if the summation usage vectors before and after the

optimization done by a node are UA = [X1, X2, . . . , XN]
and UB = [X̄1, X̄2, . . . , X̄N] respectively, then the difference

vector �U = UA − UB = [�X1,�X2, . . . ,�XN] gives

some hints about the usage vector of the computing node.

B. Efficient Computing

Usually a large number of rounds of local optimizations are

required to reach the global optimal point. While reaching

the global optimal is very time consuming, running MPC

algorithm at the beginning of each local optimization process

must increase the execution cost. The overhead of our local

optimization algorithm is simply the summation of the cost

of running MPC and the cost of optimization. In order to

reduce the overhead, we apply clustering, which reduces the

number of participating nodes in an MPC execution. In our

solution, we use mutually exclusive clusters as shown in Fig.

5. A number of clusters of nodes are formed among the

participating nodes, which are mutually exclusive, that is,

the intersection of any two clusters is an empty set. A node

executes MPC in its cluster only. Hence, the node requires to

get the summation of the usage vectors of the members of each

of the other clusters. For the collection, the computing node

chooses an arbitrary node from each cluster. The sum may not

Fig. 5. The cluster based MPC technique

be the most updated one, as the selected node might not be the

last that has executed the optimization (so it has done with the

MPC to get the summation of the usage vectors of its cluster

members). Hence, the summation found in this way might not

be accurate, and as a result the optimization cannot be perfect.

However, the possible error in the optimized value removes

as the algorithm converges. Algorithm 1 is modified for the

cluster based solution in Algorithm 2. The time complexity

of this algorithm is basically O((N/C)M), where N is the

number of users, C is the number of clusters, and M is the

number of iterations for the convergence.

Algorithm 2 Executed by each node x ∈ N.

repeat
if a random time instance to compute optimization then

Execute MPC to get the summation of usage vectors

SC in its cluster C.

Collect the summation of usage vectors S−C from all

other clusters

Add SC and S−C to get the total S
Solve local optimization (9) of ux.

Update SC according to current ux.

end if
until There is no significant update in ux for a number of

last consecutive rounds.

C. Ensuring the Truthfulness of Participating Nodes

Here, we assume a semi-honest user model [11], i.e., a

user may cheat passively (tell a lie about its information),

but it always follow the protocol (the MPC and optimization

procedure). We show an example of how a participating user

can get benefit from lying in Fig. 6. We consider three users

A, B, and C, along with their arbitrary usage vectors (three

time slots in each vector) in the example. In Fig. 6(a), we

show the expected scenario, where each participating user is

truthful about its usage. In that case, we see that B pays $304
for its electricity usage. We follow a simple price function,

C(L) = 2L2 for each time slot. In Fig. 6(b), we show the

case when B lies about his usage. He pretends that he would

use 10kWh in the third time-slot, though his actual intention

283283

(a)

(b)

Fig. 6. Cost (price) of usage of a node (a) when it is truthful about its usage,
(b) when it has lied about its usage (more than its actual requirement).

is different (6 kWh). After the optimization, B is supposed

to use 10 kWh in the third slot. However, in practice he uses

6kWh. As a result, the price at that slot reduces well and B
pays $300 for his usage. Hence, he gets benefit from lying.

However, other users A and C will need to pay more than that

in the case of the truthful scenario. If B could not lie about

his total usage, he cannot benefit from lying about its usage

vector, i.e., the potential usage distribution in different time

slots. The following theorem proves this.

Theorem 1: If the advertised total usage (at the time of

participating in the optimization process) is equal to its actual

usage, there is no incentive in lying about the usage vector.

Proof: Let ū1, ū2, . . . , ūN is the optimal usage vectors of N
participating nodes with an untruthful user x. The user x has

lied about its usage vector (usage distribution only) at the time

of optimization process. After the finish of the process, x is

using a different slot s for the load l, other than the slot s̄
that it advertised (and used) at the time of optimization. Let,

based on the current optimal usage vectors, the total load of

the slot s is L. Hence, the current load L̂ is L + l, which

eventually increases the electricity price rate of that slot from

P to P̂ . If it would use the slot s for the load l at the time

of optimization, the total load of the slot s L′ would not be

more than L + l. Hence, L′ ≤ L + l. The reason behind the

possibility of L′ < L+ l is that, at that time of optimization,

other competing nodes might move from s to a different slot,

since they found one more candidate x with load l for this

slot. They might move to s̄ as x would not be a candidate of

load l for this slot. Therefore, no way x can get more payoff

(less cost) by lying about its usage distribution only.

Therefore, it is important to ensure whether any participat-

ing node has lied about its total usage. We propose a solution

to address this issue. Each participating node knows the

summation of the usage vectors of all the participating nodes

from the beginning to the end (when the process converges) of

the optimization process. From the summation usage vector,

each node knows the overall total usage of all the participating

nodes (not individual total usage). Hence, throughout the

optimization process no node can tell a lie about its total

usage, as it will change the overall total usage. Each node

knows the expected total load according to the optimal usage

vector. We assume that the power utility company provides

the nodes with the usage report of each day that shows the

total load at each slot of that day. If a node finds a significant

difference between the reported load and the expected load,

one can go for verification. A third party is required to play

the adjudicator or judge role in this case. The following series

of actions can find the cheater, if there is any:

1) At the beginning of computing local optimization, each

node executes the following steps:

a) Each node executes MPC to know the summation

usage vector UI of the usage vectors of all partic-

ipating nodes. It computes the total usage TI from

UI .

b) Each node hashes its total usage. The hash function

is one-way cryptographically secure and known to

all. Along with this hashed value, it also sends the

summation usage vector ŪI to each node. It signs

the message using its private key and sends it to the

requesting node by encrypting it with the receiver’s

public key. This message acts as the commitment
made by the node about its total usage.

c) Receiving such a message, each node compares its

UI with the received ŪI , which ensures that all

nodes start with the same summation.

2) At the time of each local optimization, each node is

required to compute the sum of the usage vectors TO,

which should be the same as TI .

3) At the time of real use, if a node finds anomaly between

the expected and the reported usage (after observing the

report provided by the utility company), it initiates a

verification. The verification is done by the adjudicator,

which works as follows:

a) The verification initiating node sends the energy

provider the hashed value of the total usage of each

node.

b) The adjudicator collects the actual total energy

usage of each participating node from the energy

provider. Now it hashes the actual total usage

and compares it with the corresponding hashed

value provided by the initiator. If the actual is

significantly different than the advertised one, the

corresponding node lied about its total usage.

The actual usage can be reasonably a little different from the

advertised one, but the difference cannot be significantly high.

Hence, a threshold value can be defined and the verification

for equality can be done within the threshold value. There

should be some kinds of penalties (punishments), e.g., in terms

of money, against the cheated nodes, as well as necessary

reimbursements for the suffered nodes.

284284

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25

En
erg

y U
sag

e (
in

kW
h)

Time of the Day (in 24 Time Slots)

The Initial (total) Energy Usage per Time Slot

(a)

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25

En
erg

y U
sag

e (
in

kW
h)

Time of the Day (in 24 Time Slots)

The Optimal (total) Energy Usage per Time Slot

(b)

 59800

 59900

 60000

 60100

 60200

 60300

 60400

 0 10 20 30 40 50 60 70 80

En
erg

y C
os

t (i
n D

oll
ar)

Number of Iterations

The Time of Convergence towards the Optimal Usage

(c)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 5 10 15 20 25 30 35 40

Nu
mb

er
of

Ite
rat

ion
s

Number of Users

The Number of Iterations for Convergence w.r.t. The Numbers of Users

(d)

Fig. 7. (a) The initial total usage vector in different time slots (15 users), (b) the corresponding optimal total usage vector (after executing optimization
process), (c) the energy cost (reduction) trend towards the optimal value with the number of iterations (rounds) of the optimization algorithm, and (d) the
number of iterations that our proposed solution takes for convergence.

IV. EVALUATION

We evaluate our proposed solution, especially its scalability,

by running a simulation program written in Java. We run our

experiment in Intel Core2-Duo 2.2GHz Processor. Each user

x ∈ N has an arbitrary number of nonshiftable household

appliances and an arbitrary number of shiftable household

appliances. These arbitrary numbers are taken from the range

between 10 to 20. Each nonshiftable appliance has a fixed

operation schedule, while each shiftable appliance has a dura-

tion of operation and the possible time slots of operation (i.e.,

some consecutive time slots ranging from a starting slot to an

ending slot). The number of possible time slots must be larger

than the usage duration. These properties of the appliances

are arbitrarily chosen. We do our experiment taking 10 to 25
users. For the constants of the cost function Ch(.), we assume

that both bh and ch are equal to 0 for all h ∈ H, and the

values of ah, h ∈ H are an arbitrary value chosen between 0.5
to 0.6. The initial hourly cost of 15 users is depicted in Figure

7(a). In the experiment of our proposed solution we use fixed

size mutual exclusive clusters, while the number of clusters

depends on the number of participating users.

Our solution without clusters is almost similar to the al-

gorithm of [1], except that the MPC algorithm (along with

cryptographic measures) is executed by a node before each

computation of the local optimization. We simulate MPC

simply by the number of messages with a fixed processing

overhead. The size of a cluster is taken as 5 users. We assume

that the optimization process converges when the difference

of cost reduction is less than 0.001 in the last consecutive

rounds (e.g., 20) of local optimizations for each node. After

the convergence, the summation of the optimal usage vectors

of all users according to the example scenario of Fig. 7(a) is

shown in Fig. 7(b). The second figure shows that the loads of

the slots are more balanced than those of the former figure. The

peak hourly usage value is reduced from 84 (as in Fig. 7(a))

to 75 (as in Fig. 7(b)). Since, the total load of slot increases

the electricity price following a convex function, the users try

to shift from the peak slots to the off-peak slots.

The cost reduction pattern with the execution of the algo-

rithm (in case of 5 users) is shown in Fig. 7(c). It shows that

at the very beginning of the iterations the cost reduces very

quickly. After the few initial iterations the algorithm starts

converging slowly. We see from the figure that the overall

energy cost is reduced from $6.04×104 to about $5.99×104.

As we discussed before, due to the reduction of the usage in

peak-hours, not only the users will save money, but also the

power company will save a lot by reducing the investment in

the capacity of their power plants. Fig. 7(d) shows the number

of iterations that our solution takes to converge in case of

different numbers of users.

In order to compare our proposed algorithm with the

existing algorithm [1], we did a number of experiments by

simulating 10, 15, 20, and 25 users. In case of our method,

the experiments are done taking 2, 3, 4, and 5 clusters, where

each cluster has 5 users. The running time of the simulation

program is measured by the built-in timer of Netbeans, which

gives the running time in seconds. The average running time

of our method and that of the existing method [1] are shown in

Table I. From the table we can clearly observe that the running

time of the existing method increases significantly with the

285285

TABLE I
THE COMPARISON BETWEEN NON-CLUSTER METHOD AND THE CLUSTER BASED METHOD

Non-Cluster Method Cluster Based Method
Users Initial Cost (Dollars) Time (Seconds) Cost (Dollars) Time (Seconds) Cost (Dollars)
10 281541.3 0.099 276733.4 0.240 276730.3
20 1094853.1 0.655 1074111.0 0.420 1074105.1
25 1456517.5 27.038 1440312.5 0.526 1440307.2
30 2087363.4 - - 0.698 2053263.8
40 3772814.5 - - 2.753 3615380.5
50 6999563.1 - - 10.044 6785863.3
100 16538176.50 - - 46.68 15868284.50

number of users. We observed that if the number of users is

larger than 30, this algorithm took a significantly high running

time. That is why, we did not run the simulation more than

30 users for the existing method. The optimal result produced

by our method is very close to that produced by the existing

method, but according to the computational complexity, our

method performs excellently well. In the case of 25 users, our

solution is around 50 times faster than that of [1].

V. RELATED WORK

In this section, we briefly discuss the researches done for

the optimized energy usage, especially with respect to the cost.

M. Fahrioglu et al [3] proposed a game to help the interaction

between a utility and its customers to let the customer help

a utility solve a variety of problems. The idea of the game

is to design an incentive structure which is able to encourage

the player to make the right contract and revel their true value

of power. N. Ruiz et al. [7] introduced a direct load control

algorithm based on linear programming to operate the virtual

power plant composed of a large number of users with load

reduction capabilities. The algorithm can obtain the maximum

load reduction by determining the scheduling consumption

strategies for the controllable users.

Mohsenian-Rad and Leon-Garcia proposed an optimal and

automatic residential energy consumption scheduling frame-

work in [9] that minimizes the electricity payment as well

as the operational waiting time of each household appliance

under a real-time pricing model. The authors addressed a sim-

ilar problem in [1] for autonomous demand side management

within a neighborhood. They considered the deployment of en-

ergy consumption scheduling (ECS) devices in smart meters,

which can communicate with each other. The game theory is

applied to distributively find the optimal consumption schedule

vectors for all the users. None of these algorithms addresses

the security problems introduced by their proposed algorithms.

Li et al. [10] presented a distributed data aggregation process

for smart meters involved in transmitting data from a set of

meters to the data collector. To protect user privacy, they

applied homomorphic encryptions. So, the meters participating

in the aggregation cannot see intermediate results. However,

their solution is costly and it cannot solve the security issues

other than privacy found in our problem domain.

VI. CONCLUSION

Efficient electrical energy usage is very important, espe-

cially with the growing need of electricity. Leveraging the

two-way communication capability of smart meters, some

distributed solutions are proposed for the optimal energy

consumption scheduling of household appliances of the energy

users. This paper has presented a mutually exclusive cluster

based solution for the optimal energy management problem,

which efficiently solves the security problems found in the

earlier proposed solutions. Our solution provides data privacy,

as well as protection from false data injection. Comparing to

the existing demand-side management solutions, the proposed

approach is also highly efficient. The running time of the

existing solutions increases quadratically with the increase of

the number of users, while that of our solution increases almost

linearly. Particularly, in our experiment with 25 users, our

solution is around 50 times faster than the existing solution.

We have also presented an example which shows that a user

participating in the optimization process can get benefit by

lying about its usage. We have proved that if an user cannot

be untruthful about its total usage, then he cannot get any

incentive by lying about the distribution of usage in different

time slots. We have proposed an adjudicator (i.e., a truthful

third party verifier) based solution in order to ensure the

truthfulness of the participating users.

REFERENCES

[1] Amir-Hamed Mohsenian-Rad, et al. Autonomous Demand-Side Manage-
ment Based on Game-Theoretic Energy Consumption Scheduling for the
Future Smart Grid IEEE Transaction on Smart Grid, Vol 1, No 3, 2010.

[2] U.S. Department of Energy. 2010 Buildings Energy Data Book. Energy
Efficiency and Renewable Energy, Mar 2011.

[3] Fahrioglu, M. and Alvarado, F.L. Designing incentive compatible
contracts for effective demand management Power Systems, IEEE
Transactions on, PP. 1255-1260, Vol 15, No 4, 2000.

[4] Krishnan, R. Meters of tomorrow IEEE Power and Energy Magazine,
PP. 92-94, 2008.

[5] C. Triki and A. Violi. Dynamic pricing of electricty in retail markets Q.
J. Oper. Res., Vol. 7, No. 1, pp. 2136, Mar. 2009.

[6] Masters, G.M. and ebrary, Inc. Renewable and efficient electric power
systems Wiley Online Library, 2004.

[7] Ruiz, N., Cobelo, I. and Oyarzabal, J. A direct load control model for
virtual power plant management Power Systems, IEEE Transactions on,
Vol 24, No 2, PP. 959-966, 2009.

[8] Herter, K. Residential implementation of critical-peak pricing of electric-
ity IEEE Transactions on Power Delivery, Vol 35, No 4, 2007.

[9] Mohsenian-Rad, A.H. and Leon-Garcia, A. Optimal residential load
control with price prediction in real-time electricity pricing environments
IEEE Transactions on Smart Grid, Vol 1, No 2, 2010.

[10] Li, F., Luo, B. and Liu, P. Secure information aggregation for smart grids
using homomorphic encryption First IEEE International Conference on
Smart Grid Communications, PP. 327-332, 2010.

[11] O. Goldreich. Foundations of Cryptography: Volume II (Basic Applica-
tions). Cambridge University Press, 2004.

[12] Atallah, M. and Du, W. Secure multi-party computational geometry
Algorithms and Data Structures, PP.165-179, Springer,2001.

286286

