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Abstract—The recent proposed solutions for demand side energy management leverage the two-way communication infrastructure
provided by modern smart-meters and sharing the usage information with the other users. In this paper, we first highlight the privacy
and security issues involved in the distributed demand management protocols. We propose a novel protocol to share required
information among users providing privacy, confidentiality, and integrity. We also propose a new clustering-based, distributed
multi-party computation (MPC) protocol. Through simulation experiments we demonstrate the efficiency of our proposed solution. The
existing solutions typically usually thwart selfish and malicious behavior of consumers by deploying billing mechanisms based on total
consumption during a few time slots. However, the billing is typically based on the total usage in each time slot in smart grids. In the
second part of this paper, we formally prove that under the per-slot based charging policy, users have incentive to deviate from the
proposed protocols. We also propose a protocol to identify untruthful users in these networks. Finally, considering a repeated
interaction among honest and dishonest users, we derive the conditions under which the smart grid can enforce cooperation among
users and prevents dishonest declaration of consumption.
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1 INTRODUCTION

Energy is critically important for residences and factories.
With the booming of the population and the need of elec-
trical energy, increasing efficiency becomes an important
issue. A recent report from U.S. Department of Energy [1]
states that, in the Unites States, almost two-fifths of the total
electricity is consumed in households. However, the energy
use is not efficient; the distribution of energy consumption
rate in different hours of the day is not even. The peak
usage of electricity is much higher than the off-peak periods.
The peak value of electricity consumption data is extremely
important for electric companies as the generation capacity
of their power plants must be higher than the peak value. If
some loads from the peak-periods can be shifted to the off-
peak periods, the power company would be benefited by
the reduction of the cost of power generation. Controlling
the energy usage at the customer side of smart meters has
received a lot of attention. Some research (e.g., [2], [3], [4])
has been made to minimize the cost of production with
the indirect interaction between the energy users (i.e., the
customers) and the energy provider giving incentive for
using energy at off-peak hours.

The advent of smart meters gives the opportunity of
two-way communication between the meters and the utility
servers through the intelligent collectors [5]. This opportu-
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nity allows the researchers to rethink the optimal demand
side management, which is also known as demand response.
A direct load control solution for demand response is pro-
posed in [6], where the utility remotely controls energy
consumption for high-load household appliances like air-
conditioners and water heaters. In [7] and [8], electricity
scheduling methods are proposed to reduce the peak-to-
average ratio (PAR) of the energy usage by introducing
some flexible electricity price functions. These methods de-
pend on the response of the users to the time-differentiated
prices by shifting their load from the peak hours to the off-
peak hours. These research works focus on the household
users, particularly the household appliances, which are flex-
ible in their usage time; hence one can shift the usage time
from peak time to off-peak time to reduce the cost.

Mohsenian-Rad et al. in [9] proposed an autonomous
and distributed demand-side energy management system
among users that takes advantage of the communication in-
frastructure among the smart meters. The game-theory [10]
is applied to formulate the energy consumption scheduling
problem, solution to which gives the maximum payoff to
the users. Similar automated demand side management
systems are also proposed in [11], [12], [13], [14], [15]. In
these works, demand response solutions typically optimize
the overall cost of power generation and, thereby, the usage
cost of the customers.

The distributed algorithm for the optimization of the
energy consumption schedule requires a user to broadcast
his hourly usage information to the other participating
users; this algorithm interferes with the privacy problem.
As the participating users possess various characteristics
and they are mostly unknown to each other, privacy is an
important matter. The algorithm is also susceptible to false
data injection and replay attacks. Due to these attacks, the
optimization algorithm can come up with a result which
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is different from the actual optimal result. In this case,
the participating users after optimization may not get the
expected benefit; rather, they can end up paying much more
than the regular price.

Moreover, some participating users may lie (i.e., defect)
about their energy consumption behaviors. Though such
defection will not give the global optimal benefit, one might
be motivated to defect if he can get better payoff than being
truthful. In terms of complexity, the algorithm is not time-
efficient, as the algorithm requires a user to communicate
all other users repeatedly until the global optimization is
reached. Therefore, with the number of users, the time
required for the convergence increases rapidly. In this paper,
we propose some novel mechanisms for the distributed
customer-side demand management in order to thwart se-
curity and privacy attacks by malicious outsiders or insiders
in smart grids. We propose a mechanism for optimizing
energy cost that meets the security challenges and performs
efficiently that is developed on top of the typical energy
consumption scheduling model. Our contributions in this
paper are fivefold1:

• First, we propose an efficient secure multi-party com-
puting (MPC) solution to preserve the privacy and
security of the usage schedules. We have adopted the
energy consumption scheduling model and manage-
ment protocol proposed in [9] as a use case.

• Second, we enhance the efficiency of the distributed
demand management protocol by clustering the par-
ticipants and executing the optimization protocol
over the clusters.

• Third, we demonstrate a scenario wherein a partici-
pating user can benefit by telling lies about its usage,
if the price of electricity is computed based on con-
sumers’ usage in each slot (we call it per-slot billing
mechanism in this paper). We also formally prove
the incentive to deviate in such a scenario. Then we
discuss assumptions for which there is no incentive
for defecting. We also devise a truthful verifier-based
solution in order to ensure the truthfulness of the
participating users, where the verifier could be one
of the users.

• Fourth, considering repeated interactions among
users, we derive the conditions under which we
can enforce cooperation among users and prevents
dishonest declaration of consumption by a simple tit-
for-tat mechanism.

• Finally, we evaluate the scalability and efficiency of
our solution by executing simulation experiments.

The rest of this paper is organized as follows. We briefly
discuss the demand management problem and its formal-
ization in Section 2. We present our proposed solution for
privacy and secrecy in Section 3. In Section 4, we present an
incentive design to make scheduling protocol robust again
selfish behaviors. We present the simulation experiments
and evaluation results in Section 5. In the following section,
we discuss some points regarding our proposed solution.
We briefly present related work in Section 7 and conclude
the paper in Section 8.

1. An early versiion of this work has been presented in IEEE TRUST-
COM 2012 [16], including the first and second contributions.

2 SYSTEM MODEL

The main objective of this work is to formulate a secure and
private mechanism for distributed protocols, in which the
participating users need to share their private information to
execute the protocols, while the integrity of the information
is vulnerable to internal and external adversaries. To achieve
this objective, in this work we consider the energy con-
sumption scheduling model, in which users participate in
a distributed protocol to optimize the energy usage cost. We
believe that our proposed solution can easily be deployed
within other distributed scheduling protocols in smart grids,
where the scheduler needs the cooperation of smart meters.

2.1 Energy Consumption Model
In our model, the energy source provides the energy to the
users by power lines. Each user is equipped with a smart
meter. The smart meters are connected through the power
line or Wi-Fi communication media, which forms a Local
Area Network (LAN). The energy provider is connected to
this LAN through the Wide Area Network (WAN). Each
smart meter has an energy consumption scheduling (ECS) unit,
which is capable of doing some arithmetic computation or
processing.

The electricity cost function is defined as Ch(Lh), where
Lh is the hourly consumption of electricity and Ch(.) re-
turns the cost of consumed electricity at time h ∈ H. H
denotes the set of the time slots in a day. The cost per unit
of electricity usage can be different at different times, which
depends on the total electrical usage of all the users. The
cost equation is a strictly increasing function as follows:

Ch(b) < Ch(c), ∀ b < c

The power generation cost is often represented using
convex functions [17]. In the case of thermal power gen-
erators, a quadratic cost function is considered. In order
to reflect the generation cost accurately while charging the
customers for their energy usage, the cost function is often
considered as strictly convex [9], [18], [19]. Such functions
indirectly motivate the customers to use electricity during
off-peak hours. The convex function is represented as fol-
lows:

Ch(θb+ (1− θ)c) < θCh(b) + (1− θ)Ch(c),

∀ b < c, and ∀θ ∈ (0, 1)

The set of users are denoted as N. The number of
users is denoted by N (i.e., N = |N|). The vector ux =[
u1
x, u

2
x, ..., u

24
x

]
denotes the usage vector for a user x ∈ N

in 24 hours (i.e., H = {1, 2, ..., 24}), where uhx denotes
the hourly consumption of x at the time h. Hence, the
summation of the usage vectors of all the users is denoted
as follows:

u =
[
u1, u2, ..., u24

]
=

[∑
x∈N

u1
x,
∑
x∈N

u2
x, ...,

∑
x∈N

u24
x

]
The summation is also a vector, which is named as the

summation usage vector. The total cost of all the users is
defined as

∑
h∈H Ch(uh), where the uh is the hourly usage

of all users at time h ∈ H .
For each user x ∈ N, we define the set of household

appliances as Ax. Each appliance a ∈ Ax has an individual
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daily usage vector: ux,a =
[
u1
x,a, u

2
x,a, ..., u

24
x,a

]
. Note that

an appliance needs a specific period of operation. Some
appliances have fixed time slots of operation, while many
others are flexible within some boundaries. The usage vector
of a user x is the summation of the usage vectors of all
appliances:

ux =
[
u1
x, u

2
x, ..., u

24
x

]
=

[∑
a∈A

u1
x,a, ......,

∑
a∈A

u24
x,a

]
The peak-to average ratio (PAR) is defined as follows:

PAR =
maxh∈Hu

h∑
h∈H u

h/|H|

2.2 Energy Consumption Scheduling
Our energy consumption scheduling problem is similar to the
game presented in [9], where players are the registered users
in set N. The strategy of each user x is its energy usage
vector ux to maximize its payoff considering the other users
strategies (i.e., u−x). The payoff function is defined as:

Px(ux;u−x) = −
∑

h∈H u
h
x∑

x′∈N
∑

h∈H u
h
x′

∑
h∈H

Ch(
∑
x′∈N

uhx′) (1)

It has been proved that once the game has no change,
the game reaches to the Nash equilibrium point [9], where
no user will get benefit by choosing other scheduling. It is
worth mentioning that, while maximizing the payoff, the
appliances are scheduled such that their operational needs
are satisfied within the bounded time frames.

A distributed algorithm is executed between the partic-
ipating users by the corresponding ECS units. In the rest
of the paper, we will use the word node to represent a
user, specifically the ECS unit corresponding to the user.
Each node x randomly executes the local optimization (i.e.,
solving Equation (1)). To execute the local optimization, a
node needs the summation of all nodes’ usages. In order to
have the summation, each node (x) needs to broadcast its
usage vector (ux) to others in the beginning and when any
changes made to the usage vector. The algorithm converges
to the optimal point, until there is no more broadcasting of
usage vectors for a while. The nodes are supposed to be
honest and declare their required amount of consumption.

The users are charged according to Equation (1). This
means that the billing is a function of total consumption
of users. However, since the electricity price is different at
different time slots, the per-slot based billing mechanism
provides fairness among users, where the payoff function
of a user x is defined as follows [19]:

Px = −
∑
h∈H

uhx∑
x′∈N u

h
x′
Ch(

∑
x′∈N

uhx′) (2)

In the rest of the paper, we refer to these above men-
tioned billing mechanisms (i.e., Equation (1) and Equa-
tion (2)) as total-consumption based mechanism and per-slot
based mechanism, respectively. We believe that the latter
mechanism is more acceptable in smart grid billing sys-
tems, since with a per-slot based mechanism, the smart grid
can charge users based on their real consumption in any
given slot. In the next section, we address the security and
privacy threats in the above algorithm and discuss potential
solutions.

3 DATA PRIVACY AND SECRECY IN SMART GRID

The distributed algorithm requires the broadcasting of the
usage vector by each node. This broadcasting message is
also sent as a plain text. The plain text introduces the privacy
problem along with the following security problems: (i) the
usage vector of a user can be eavesdropped on by listening
to the communication media, and (ii) a malicious person
can inject false data in order to cause the optimization to
fail. In this particular work, we primarily assume external
malicious attackers who can eavesdrop or inject false data.
Within the participating nodes, we assume a semi-honest
adversary model [20]. That is, the participating nodes follow
the protocol, although some of them may be interested to
know about others’ usage pattern.

We propose a secure multi-party computing (MPC) al-
gorithm to resolve the privacy problem of sharing user
data. In our algorithm, a computing node runs the MPC
algorithm to receive the summation of the usage vectors of
all other nodes before performing each local optimization.
Although any suitable MPC solution [21] could be adopted,
we emphasize the computational efficiency of the algorithm
by proposing a simple and light-weight protocol for secure
MPC, which is very important for the low processing power
devices like smart meters. In our approach, we mainly apply
randomization to maintain privacy. In order to prevent
eavesdropping (i.e., confidentiality) as well as the injection
of false data (i.e., authenticity), we use cryptography.

A node requires the aggregation of the usage vectors of
all the participating nodes for running local optimization. In
our solution, we run the MPC first to get the summation of
the usage vectors. An example execution of the technique
is shown in Fig. 1 for three nodes. The execution of MPC
algorithm is sequential like a ring: all the participating
nodes create a logical ring starting from the computing node
and ending to the same node. For a particular node, the
logical ring is usually different at different executions of
local optimization, because it is randomly selected at the
time of execution.

The computing node (e.g., x0 as in the figure) starts
MPC by launching a message containing its usage vector
ux0 added with a random usage vector R and its identity.
The message is sent to an arbitrarily selected node x1. The
message is encrypted using the private key of x0 (i.e., pr-x0),
which follows by the encryption using the public key of x1
(i.e., pb-x1).

When the node x1 receives the message from x0, it
decrypts the message. It receives the summed usage vector
(here R + ux0) and the nodes (here only x0) which have
added their usage vectors to the summation. Now it adds its
usage vector with R + ux0. Then x1 encrypts the resultant
usage vector first using its private key (i.e., pr-x1) and
second using the public key of x2 (i.e., pb-x2). It sends a
message comprised of the encrypted usage vector and the
identities of the nodes, which have added their usage to
the node x2 that is arbitrarily selected from the remaining
nodes (i.e., whose usage vectors are yet to be added). In this
way, the message is received by a node after which there
is no node remaining to add to the summation. This node
(here x2 according to the figure) adds its usage vector to the
summation and sends the message to the MPC initiating
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Fig. 1. The MPC technique for summing the usage vectors of the participating nodes that includes authentication and confidentiality security
measures also.

Algorithm 1 Executed by each node x ∈ N.
repeat

if a random time instance to compute optimization
then

Execute Secure MPC to get the summation S−x of all
the users’ usage vectors.
Solve local optimization Equation (1) of ux.

end if
until There is no significant update in ux for a number of
last consecutive rounds.

node (i.e., x0) along with the list of participating nodes
applying the same encryption steps onto the message. Note
that at least three nodes are required to participate in the
MPC technique. In the case of two nodes, the MPC initiating
node can easily figure out the other node’s usage vector. The
distributed algorithm for local optimization of the usage
vector executed by each node is shown in Algorithm 1.
Each node continuously executes the local optimization at
random time intervals. At each run, the MPC algorithm is
executed to get the summation of the usage vectors of all
users. A node stops executing any further round of the local
optimization process when there is no significant update in
ux for a number of consecutive rounds.

3.1 Properties of the Proposed MPC Algorithm

In the following subsections, we briefly review the main
features of the proposed secure and private MPC algorithm
for energy consumption in smart grids.

3.1.1 Importance of Applying Both Encryptions
In our proposed MPC process, each node (e.g., x0) at first
encrypts the message using its private key (e.g., pr-x0) and
then encrypts the same using the public key of the receiving
node (e.g., pb-x1). These two encryptions are not required for
secure MPC execution, i.e., privacy preservation. If the first
encryption is not performed, any malicious person can inject
false data. If false data is injected, the summation will not be

the actual data, and thus the optimal value will be incorrect.
As a result, the nodes will not benefit from participating in
the optimizing process. This encryption is known as signing
the message.

In the case of second encryption, if the message is
not encrypted by the receiving node’s public key, anyone
can eavesdrop on the message breaking the confidentiality.
Though the message content (i.e., the summation usage
vector and the participating nodes) does not allow an attack
on the protocol, the MPC initiating node x0 can eavesdrop
on the messages and decrypt them to find the usage vectors
of the other nodes. In Fig. 1, x0 eavesdrops on the message
sent by x1 to x2 and decrypts the message using the public
key of x1 (as it is not encrypted using the x2’s public key).
Hence, the node can easily figure out the usage vector of x1.
Similarly, from the message sent by x2 to x0, the node gets
the usage vector of x2 by subtracting the usage vector of
x1. If there are more nodes, it can get the usage vectors
of all the participating nodes in MPC by eavesdropping
on all messages between nodes. The communication is also
susceptible to replay attacks. The random usage vector (R)
also helps to get rid of such attacks.

3.1.2 Protection against Sandwich Attack

One node randomly selects the next node in the logical
sequence at each MPC execution; in the case of a particular
node, the node sequence in the ring is usually different
than that of a different MPC execution. Even the ring is not
known when the execution runs. This random selection is
done because, otherwise, a node can easily be sandwiched
by the preceding node and by the subsequent node in the
sequence in order to learn its usage vector.

The sandwich attack cannot be fully avoided by apply-
ing randomness; rather this randomness only makes the
collusive attack less potential. In fact, the probability of
successful sandwich attack would be 1/N (N is the number
of participating users), when one of the colluding nodes
always choosing the victim node as its next node. However,
the victim node can easily detect this malicious behavior.
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Moreover, increasing the number of participants, i.e., larger
values of N , would decrease the chance of successful attack.

3.1.3 MPC Executing at Each Local Optimization

The execution of MPC at each optimization process in-
creases the execution cost (i.e., time complexity) of our
algorithm. However, it is possible to execute the MPC only
at the beginning of the whole process, not at each local
optimization process. In this case, the computing node re-
quires broadcast of the updated summation usage vector to
all other participating nodes. At the time of executing each
local optimization, a node requires use of the latest summa-
tion usage vector, though this raises a privacy issue again.
Comparing the broadcasted usage vector with the earlier
vector, one node can understand the changes done by the
computing node. That is, for example, if the summation us-
age vectors before and after the optimization done by a node
are UA = [X1, X2, . . . , XN ] and UB = [X̄1, X̄2, . . . , X̄N ]
respectively, then the difference of the two vectors, 4U
(where, 4U = UA − UB = [4X1,4X2, . . . ,4XN ]) gives
some hints about the usage vector of the computing node.

3.1.4 Protect the List of Participants

Here we consider a special scenario in which an external at-
tacker compromises a participating node. Then, it makes the
compromised node interrupt the MPC scheme by bypassing
the next node, or simply returning the partially aggregated
result to the MPC initiating node. It manipulates the list of
participating nodes showing that each node has participated
in this particular execution. As a result, the MPC scheme is
corrupted without being detected by any other node leading
to the optimization failure.

We devise a solution against such a list-manipulation
attack. Along with the list, each node creates a signed mes-
sage containing a sequence of three nodes: (i) the node itself
(e.g., x1 in Fig. 1), (ii) the previous node in the ring (x0, from
which it has received the accumulated result), and (iii) the
next node in the ring (x2, to which it will send the updated
accumulated result). It then sends the message directly to
the initiating node or adds the message along with the list
and the aggregated result during the MPC algorithm. When
the MPC initiating node receives these messages, it can
easily verify if all nodes have participated in the scheme.
The node order in the signed message restricts the chance of
replay attacks later, as this order is supposed to be random.
However, a timestamp can replace this order in the message,
if all nodes share a globally synchronized timing system.

3.2 Efficient Computing

The convergence cost of the optimization algorithm is high.
The average time of the algorithm is O(NM), where N is
the number of participating nodes and M is the number
of rounds required for the convergence. For a large N , M
also becomes very high. As a result, the implementation of
this algorithm is infeasible for large number of users. The
main reason behind this cost is a large number of messages
that are required to exchange until the convergence. The low
computational capability of a smart meter is also important
to consider. Each optimization round is expected to take a

a0 

a1 

a2 

b0 

b1 

b2 

c1 

c1 

c0 

A 

C 

B 

Request for UC 

2: Epb-a2(UC,Epr-b0(UC)) 

Request for UB 

2: Epb-a2(UB,Epr-b0(UB)) 

M
P

C
 

MPC 

Fig. 2. The cluster based MPC technique.

Algorithm 2 Executed by each node x ∈ N.
repeat

if a random time instance to compute optimization
then

Execute MPC to get the summation of usage vectors
SC in its cluster C .
Collect the summation of usage vectors S−C from all
other clusters
Add SC and S−C to get the total S
Solve local optimization (following Equation (1)) of
ux.
Update SC according to current ux.

end if
until There is no significant update in ux for a number of
last consecutive rounds.

significant processing time. Therefore, this algorithm is not
suitable for implementation on a large scale.

Usually numerous rounds of local optimizations are
required to reach the global optimal point. Running MPC
algorithm at the beginning of each local optimization pro-
cess must increase the execution cost. The overhead of our
local optimization algorithm is simply the summation of
the cost of running MPC and the cost of optimization. In
order to reduce the overhead we apply clustering, which
reduces the number of participating nodes in an MPC
execution. In our solution, we use mutually exclusive clus-
ters as shown in Fig. 2. A number of clusters are formed
among the participating nodes, where the intersection of
any two clusters is an empty set. In this solution approach,
a node executes MPC in its cluster only. Hence, the node is
required to receive the summation of the usage vectors of
the members of each of the other clusters. For the collection,
the computing node chooses an arbitrary node from each
cluster. The sum may not be the most updated one, as the
selected node might not be the last that has executed the
optimization. Hence, the summation found in this way may
not be accurate, and as a result the optimization cannot
be perfect. However, the possible error in the optimized
value decreases as the algorithm converges. Algorithm 1 is
modified for the cluster based solution in Algorithm 2. The
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time complexity of this algorithm is basically O((N/C)M),
where N is the number of users, C is the number of clusters,
and M is the number of iterations for the convergence.

4 TRUTHFUL MECHANISM DESIGN

In the case of the per-slot based billing mechanism, the
distributed demand management protocol in [9] is vulner-
able to another security problem, which is because of the
untruthfulness of the participating nodes. A node can cheat
about its usage vector to get advantage. In this section,
we first illustrate this problem with an example. Then,
we present a solution to detect an untruthful user. Finally,
we also provide a game-theoretic solution that ensures the
participating users to follow the protocol rightfully.

4.1 Benefit by Deviating from the Protocol

As we have already mentioned, we assume a semi-honest
user model [20], i.e., a node may cheat passively (tell a lie
about its information), but it always follows the protocol
(i.e., the MPC and optimization procedure). Fig. 3 and 4
show an example of how a participating node can get benefit
from lying. We consider three nodes (A, B, and C), along
with their arbitrary usage vectors (three time slots in each
vector) in the example. In Fig. 3, we show the expected
scenario, where each participating node is truthful about
its usage. In this case, we see that B pays $336 for its
electricity usage whether we apply the per-slot or the total-
consumption based charging method. We follow a simple
convex price function, C(L) = 2L2 for each time slot,
where L is the total consumption at a given time slot. In
Fig. 4, we show the case when node B lies about its usage
and pretends it would use 12kWh in the third time slot,
though its actual intention is different (i.e., 6kWh). After
the optimization, B is supposed to use 12kWh in the third
slot. However, in practice, B uses 6kWh. As a result, when
the smart grid charges with per-slot basis, the price at that
slot reduces and B pays $312 for its usage. Hence, B gets
benefit from cheating. Note that the other nodes (i.e., A and
C) will need to pay more than that in the case of the truthful
scenario, whether they are charged based on per-slot (i.e.,
$456) or total-consumption (i.e., $437.14).

However, if the smart grid employs the total-
consumption based billing mechanism (as it is shown in [9]),
there would be no motivation for nodeB to deviate from the
protocol as it should pay more (i.e., $349.71) comparing to
the case where the node declares the true value (i.e., $336).
Moreover, this false declaration causes a significant increase
in the honest nodes’ bills. We now formally prove that a
malicious insider node can increase its payoff by lying about
its consumption. Note that similar examples can be shown
by other convex functions. We consider a simple convex
function in order to avoid complex computations, so that
it can be easy to grasp the presented example.

Theorem 1. In an energy consumption scheduling algorithm
for smart grid with per-slot based billing mechanism, a node can
increase its benefit (get electricity with lower price) by declaring
false information about its consumption while others’ payoff will
be decreased.

Usage Declaration Optimization Results Billing [C(L)=2L2] 

Time Slots  Slot 1 Slot 2 Slot 3  Slot 1  Slot 2  Slot 3 Per Slot Total 

User A 5 6 4 6 4 5 336 336 

User B 2 4 6 3 3 6 336 336 

User C 5 5 5 5 7 3 336 336 

Fig. 3. Cost (price) of usage for 3 nodes during 3 slots when they are
honest in usage declarations.

Usage Declaration Optimization Results Billing [C(L)=2L2] 

Time Slots  Slot 1 Slot 2 Slot 3  Slot 1  Slot 2  Slot 3 Per Slot Total 

User A 5 6 4 7 6 2 456 437.14 

User B (Cheater) 2 4 12 3 3 12 -- -- 

User C 5 5 5 6 7 2 456 437.14 

User B 

(Actual Usage) 
3 3 6 Per Slot Bill= 312  Total Bill: 349.71  

Fig. 4. Node B lies about its consumption during the advertisement at
the third slot and declares 12 instead of 6. In the per-slot based billing
mechanism, this cheating gives benefits (312) to the node with respect
to the honest case (336).

Proof. In this proof we assume that none of the nodes has
restriction on the usage time slots of their appliances. That
is, a node has freedom to use its appliance at different
time slots. Therefore, if the total usage of all nodes can be
distributed evenly over the time slots, each node’s payoff
will be maximized. Hence, we assume that the total usage is
evenly distributed over the time slots after the optimization.
Let LT be the total load throughout all of the time slots and
LA be the load at each time slot:

LA =
LT

|H|
=

∑
h∈H

∑
x′∈N u

h
x′

|H|
In the per-slot based billing mechanism, payoff is com-

puted using Equation (2), where Ch(.) is a strictly increas-
ing convex function. The total cost at each time slot is
Ch(LA). Therefore, ch, the cost of each unit of usage, is
ch = Ch(LA)/LA. Let us rewrite the payoff, given the
definition of ch:

Px = −
∑
h∈H

uhxch

Now we assume that node x̄ is a dishonest node and it
pretends to use ∆U h̄

x̄ more (i.e., its total usage is U h̄
x̄ +∆U h̄

x̄ )
during time slot h̄ (h̄ ∈ H), though its actual usage is still
U h̄
x̄ . Hence, after the optimization process, the usage at each

slot would be changed to L̄A:

L̄A =
LT + ∆U h̄

x̄

|H|
= LA +

∆U h̄
x̄

|H|

Since L̄A > LA and Ch(.) is a strictly increasing function
for each h ∈ H, then we conclude that Ch(LA) < Ch(L̄A). If
c̄h is the per unit usage cost in this dishonest scenario, then
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Fig. 5. The verification protocol to detect any deviation from the protocol, i.e., whether some node is lying during the execution of the optimal energy
consumption protocol.

c̄h > ch for all h ∈ H. Similarly, we can calculate the cost
during the slot h̄, considering the actual usage of dishonest
node. Let us designate this by ĉh̄:

ĉh̄ =
Ch(L̄A −∆U h̄

x̄ )

L̄A −∆U h̄
x̄

Given the properties of the cost function Ch(.), we can
conclude that ĉh̄ < ch̄. Moreover, we know that L̄A−∆U h̄

x̄ <
LA (easily derivable from the equation of L̄A). Hence we
conclude that ĉh̄ < ch. Now we calculate the new payoff of
node x who has lied in declaring its consumption (i.e., P̄x̄):

P̄x̄ = −(uh̄x̄ĉh̄ +
∑

h∈H,h 6=h̄

uhx̄c̄h)

The dishonest node x̄ is benefited from the lie, if P̄x̄ >
Px̄. It is true, when the ratio of the usage at h̄ and the usage
at the rest of the slots is greater than the ratio of the increase
of the cost at the slots other than h̄ (i.e., c̄h − ch) and the
decrease of the cost at slot h̄ (i.e., ĉh̄), with respect to the
honest scenario. That is:

uh̄x̄∑
h∈H,h6=h̄ u

h
x̄

>
c̄h − ch
ch − ĉh̄

In Theorem 1, we consider the assumption of having no
restriction on the usage time slots for an appliance. This
assumption helps us understand the idea of distributing the
energy usage within the (permitted) time slots for optimiz-
ing the energy cost.

4.2 Protocol to Detect Dishonest Node
Theorem 1 shows that a malicious node can increase its
payoff by declaring false information about its consumption
in per-slot based charging mechanism.

In the following, we provide a solution to the above
problem. The next theorem shows that if a node z cannot
lie about its total usage, it cannot benefit from lying about
its usage vector (i.e., the potential usage distribution in
different time slots).

Theorem 2. If the declared total usage at the time of participation
in the optimization process is equal to the actual usage, there is no
incentive for lying about the usage vector.

Proof. Let us assume that node x̄ has lied about its usage
vector (usage distribution only) at the time of optimization
process. After completing the optimization process, x̄ is
using a different slot s for the load l, other than the slot
s̄ that it advertised (and used) at the time of optimization
process. Based on the current optimal usage vectors, Let the
total load of the slot s be L. Hence, the current load L̄ is
L+ l, which eventually increases the electricity price rate of
that slot from P to P̄ . If it would use the slot s for the load
l at the time of optimization, the total load of the slot s, L̂
would not be more than L + l. Therefore, L̂ ≤ L + l. The
reason behind the possibility of L̂ < L+l is that, at that time
of optimization, other competing nodes might move from s
to a different slot, since they would find one more candidate
x̄ with load l for this slot. They might move to s̄ as x̄ would
not be a candidate of load l for this slot. Therefore, there is
no way for x̄ to receive better payoff (i.e., less cost) by lying
about its usage distribution only.

Considering the results of Theorem 2, we design the fol-
lowing secure protocol to ensure whether any participating
node has lied about its total usage. Fig. 5 and Fig. 6 illustrate
how the protocol works.

Note that in this protocol, each participating node knows
the summation of the usage vectors of all the participating
nodes from the beginning to the end of the optimization
process (when the process converges).
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From the summation usage vector, each node knows the
accumulated total usage of all the participating nodes (not
individual total usage). Hence, throughout the optimization
process no node can tell a lie about its total usage, as it
will change the overall total usage. Each node knows the
expected total load according to the optimal usage vector.
We also assume that the power utility company provides
the nodes with the usage report of each day, if the verifier
needs to find a cheater. If required, one or more nodes are
randomly selected as verifiers. These verifier nodes receive
required information from the provider. In the following,
we summarize the steps that should be taken to verify
whether all nodes follow the protocol:

Dishonest Node Detection Mechanism:

1) At the beginning of computing local optimization,
each node executes the following steps:

a) Each node executes MPC to know the sum-
mation usage vector U i

I of the usage vectors
of all participating nodes. It can then com-
pute the total usage TI =

∑
h∈H UI,h.

b) Each node computes the hash value of its
total usage, i.e., h(ti). The hash function
is a one-way cryptographically secure and
known to all nodes. We also assume that
this hash function is homomorphic in nature,
i.e., h(x + y) = h(x) + h(y). Along with
this hashed value, the node also sends the
summation usage vector U i

I to each node. It
signs the message using its private key (i.e.,
Epr−i) and sends it to the requesting node by
encrypting it with the verifier public key (i.e.,
Epb−v). This message acts as the commitment
made by the node about its total usage.

c) Receiving such a message, each verifier can
compare h(Ti) with the summation of de-
clared consumption, i.e.,

∑
i h(ti). If the ver-

ifier detects any difference, it will ensure that
there exists at least a node that is cheating.

2) At the time of each local optimization, each node is
required to compute the sum of the usage vectors
TO , which should be the same as TI . Otherwise, it
can detect the cheater.

3) After the period of consumption, as shown in Fig. 6,
the provider sends the total consumed energy to the
verifier. If the verifier finds the difference between
the expected and the reported usage, the verifier
initiates a verification. The verification works as
follows:

a) The provider sends all individual summa-
tion of consumed energy, i.e., h(ti,c).

b) The verifier uses the famous Yao’s million-
aire technique [22] to verify whether the
individual consumption is bounded between
ti−θ and θ+θ, given that the verifier knows
h(ti,c) and h(ti). θ can be selected by verifier,
considering the acceptable amount of devia-
tion from the requested consumption.

Fig. 6. The verification protocol to find the cheating node, i.e., whether
a node lied during the execution of the optimal energy consumption
protocol. This protocol executes after the actual energy consumption.

The actual usage can be a little smaller or larger than the
advertised usage, but the difference cannot be significantly
high. Hence, as is shown in the protocol, a threshold value
can be defined (i.e., θ) and the verification for equality can
be done within the threshold value. There should be some
penalties or punishments, (e.g., in terms of money), against
the cheated nodes, as well as necessary reimbursements
for the suffered nodes. In order to keep the privacy, this
verification must be done by using the hash values of total
consumption of each node [22].

4.3 A Game-theoretic Solution to Ensure Truthfulness
Considering the complexity of the protocol presented in the
previous subsection, we propose a simple game-theoretic
solution to ensure the truthfulness of participating nodes in
the energy consumption scheduling protocol.

We model the interaction of honest and malicious nodes
with an infinite repeated game [10], where the game will be
played with a probability of δ ∈ (0, 1] in each time. Here, δ
potentially have some impact on the period of subscription.
Since, the players should interact and run optimization
protocol over a long period of time, an infinite repeated
game is a valid assumption. Let us assume that nodes can be
divided into two main groups G1 and G2. We assume that
the nodes in group G1 are honest, while the nodes in group
G2 tend to be dishonest. In other words honest nodes in G1

follow the optimization protocol whereas dishonest nodes in
G2 tends to deviate from the protocol and declare the wrong
consumption and try to get more benefit by cheating. Any
of the nodes in the second group can initiate an infinitely
repeated game by deviating from the protocol. In such a
case, the cheater node will play with all honest nodes in the
second group.

Let us assume that the interaction between these two
groups is modeled by a game as shown in Table 1. We des-
ignate the strategy set of nodes inG1 by S1 = {C,P}, where
strategy C means that the nodes cooperate and follow the
protocol and strategy P means that the nodes in group G1

will punish nodes in G2 by not declaring their consumption
honestly.

Similarly the strategy set for nodes inG2 is S2 = {R,D},
where R means that the nodes in this group follow the
protocol and would consequently be rewarded as the nodes
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TABLE 1
Normal form of the game between Cooperative and Defective users.

G1\G2 R D
C α1, α2 γ1, β2
P β1, γ2 λ1, λ2

in G1 will also cooperate. Strategy D means that the nodes
in G2 defect and will not follow the protocol.

Note that when all nodes cooperate (i.e., (C,R)) they
obtain better payoffs compared to the case when all nodes
defect and do not follow the protocol (i.e., (P,D)). In other
words, αi > λi, i ∈ {1, 2}.

As it is shown in Theorem 1, dishonest nodes in G2 can
increase their payoffs by deviating from the protocol and
declaring false information (i.e., play D), i.e., βi > αi, i ∈
{1, 2}. Consequently, honest nodes’ payoffs decrease when
other nodes do not cooperate with them, i.e., αi > γi, i ∈
{1, 2}.

In order to get an insight into the strategic behavior of
honest nodes in a repeated interaction with other nodes, we
define the following strategy:

Definition 1. With the grim trigger strategy in repeated games,
a player will cooperate, but as soon as the opponent defects (thus
satisfying the trigger condition), the player using grim trigger
will defect for the remainder of the iterated game.

Let us assume that honest nodes use the grim trigger
strategy when they interact with dishonest nodes. The fol-
lowing theorem shows that under certain conditions the
cooperative behavior can be enforced by honest nodes.

Theorem 3. Honest nodes can get cooperation of other nodes
in the defined optimization protocol using the Grim Trigger
Strategy, if the following condition holds:

β2 − α2

β2 − λ2
≤ δ < 1

Proof. The grim trigger strategy could enforce cooperation
if the temptation to defect (i.e., playing D instead of playing
R) in a given time slot is smaller than the value of rewards
minus the value of punishment in the following stages of
the game. The temptation to defect for dishonest nodes is
β2 − α2. The total reward can be expressed as follows:

α2 + α2δ + α2δ
2 + α2δ

3 + ... =
α2

1− δ
The value of payoff after the punishment strategy will be:

λ2 + λ2δ + λ2δ
2 + λ2δ

3 + ... =
λ2

1− δ
Therefore, considering that the temptation to defect

should be smaller than reward minus the punishment in-
finitely, we obtain the following relation:

δ ≥ β2 − α2

β2 − λ2

Moreover, δ must hold the following relation: 0 < δ < 1.
Here, δ < 1 ensures that λ2 < α2. Otherwise, the pun-
ishment strategy would not work and none would have
any hesitation to deviate. On the other hand, δ > 0 states

the fact that a node may have the temptation to lie only if
β2 > α2.

Theorem 3 shows that honest nodes can prevent cheating
by applying the grim trigger strategy. Note that the existence
of dishonest nodes can be easily detected by applying the
detection protocol shown in Fig. 5. After the detection of
dishonest nodes, the grim trigger strategy taken by honest
nodes guarantees the cooperation among nodes without
applying the algorithm (Fig. 6) to find the individual cheater.
In other words, non-cooperative (dishonest) nodes will not
have enough incentive to cheat, knowing that the honest
nodes can retaliate by playing the grim trigger strategy (i.e.,
not cooperating anymore). However, this will be guaranteed
if and only if the smart grid operator chooses the amount of
punishments (i.e., λi) and rewards (i.e., αi), such that the
condition of Theorem 3 is always satisfied given the period
of subscription (i.e., δ).

5 EVALUATION

In this section, we present the evaluation results that we
find by simulating our proposed solution for optimal and
secured energy consumption scheduling. We also present
the analytical results of applying the grim strategy with
respect to the payoffs for different cases.

5.1 Simulation Results on Energy Consumption
Scheduling

We evaluate our proposed solution, especially its scalabil-
ity, by running a simulation program written in Java. We
run our experiment in Intel Core2-Duo 2.2GHz Processor.
Each user x ∈ N has an arbitrary number of nonshiftable
household appliances and an arbitrary number of shiftable
household appliances. These arbitrary numbers are taken
from a range between 10 to 20.

Each nonshiftable appliance has a fixed operation sched-
ule, while each shiftable appliance has a duration of op-
eration and the possible time slots of operation (i.e., some
consecutive time slots ranging from a starting slot to an end-
ing slot). The number of possible time slots must be larger
than the usage duration. The properties of the appliances are
chosen arbitrarily. We experiment using an arbitrary number
of users (i.e., nodes). For the constants of the cost function
Ch(.), we assume that both bh and ch are equal to 0 for all
h ∈ H, and the values of ah, h ∈ H are an arbitrary value
chosen between 0.5 to 0.6. The initial hourly cost of 15 users
is depicted in Fig. 7(a). In the experiment of our proposed
solution, we use fixed size mutual exclusive clusters, while
the number of clusters depends on the number of partici-
pating users.

Our solution without clusters is almost similar to the
algorithm of [9], except that the MPC algorithm (along with
cryptographic measures) is executed by a node before each
computation of the local optimization. We simulate MPC
simply by the number of messages with a fixed processing
overhead. The size of a cluster is taken as 5 users. We assume
that the optimization process converges when the difference
of cost reduction is less than 0.001 in the last consecutive
rounds (e.g., 20) of local optimizations for each node.
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Fig. 7. (a) The initial total usage vector in different time slots (15 users), and (b) the corresponding optimal total usage vector (after executing
optimization process).
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Fig. 8. (a) The energy cost (reduction) trend towards the optimal value with the number of iterations of the optimization algorithm, and (b)the number
of iterations that our proposed solution takes for convergence value.

5.1.1 Convergence to Optimal Results

The summation of the usage vectors of all users prior to the
optimal demand scheduling process is shown in Fig. 7(a).
After the convergence, the summation of the optimal usage
vectors of all users is shown in Fig. 7(b). We can see that the
loads during different time slots in the case of the second
figure are more balanced than those slots in the former
figure. The peak hourly usage value is reduced from 84 (as
in Fig. 7(a)) to 75 (as in Fig. 7(b)). Since the total load of slot
increases the electricity price following a convex function,
the users try to shift from the peak slots to the off-peak
slots.

The cost reduction pattern with the execution of the
algorithm (in case of 5 users) is shown in Fig. 8(a). This
pattern shows that at the very beginning of the iterations the
cost reduces very quickly. After the few initial iterations the
algorithm starts converging slowly. We see from the figure
that the overall energy cost is reduced from $6.04 × 104

to about $5.99 × 104. As we discussed before, due to the
reduction of the usage in peak-hours, not only will the users
save money, but so too will the power company by reducing
the investment in the capacity of their power plants. Fig. 8(b)

shows the number of iterations that our solution takes to
converge in case of different numbers of users.

5.1.2 Comparison with the Existing Solution

In order to compare our proposed algorithm with the ex-
isting algorithm [9], we perform a number of experiments
by simulating 10, 15, 20, and 25 users. In the case of our
method, the experiments are done taking 2, 3, 4, and 5
clusters, where each cluster has 5 users. The running time
of the simulation program is measured by the built-in timer
of Netbeans, which gives the running time in seconds. The
average running time of our method and that of the existing
method [9] are shown in Table 2. From the table we can
clearly observe that the running time of the existing method
increases significantly with the number of users. We observe
that if the number of users is equal or larger than 30, this
algorithm takes a significantly high running time. This is
why we do not run the simulation for 30 or more users
for the existing method. The optimal result produced by
our method is very close to that produced by the existing
method, but according to the computational complexity, our
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Fig. 9. (a) The value of δ (i.e., the probability of playing the next game) with respect to the values of α and λ, and (b) the minimum number of times
(i.e., days) the game needs to be repeated after the deviation (in the case of grim strategy), so that the grim strategy works correctly.

TABLE 2
Comparison between proposed and existing methods (cost in dollars

and time in seconds)

Existing Method Proposed Method
Users Initial

Cost
Time Cost Time Cost

10 281541.3 0.099 276733.4 0.240 276730.3
20 1094853.1 0.655 1074111.0 0.420 1074105.1
25 1456517.5 27.038 1440312.5 0.526 1440307.2
30 2087363.4 - - 0.698 2053263.8
40 3772814.5 - - 2.753 3615380.5
50 6999563.1 - - 10.044 6785863.3
100 16538176.50 - - 46.68 15868284.50

method performs exceptionally well. In the case of 25 users,
our solution is around 50 times faster than that of [9].

5.1.3 Relaxed Convergence Condition and Execution Time
We have defined convergence in Algorithm 1 as the con-
dition when there is no significant update, let ∆, in the
consumption schedule for a good number (e.g., equal to
the number of users) of last consecutive rounds. We have
used ∆ = 0, i.e., no update in the consumption schedule, in
our experiments. However, we have already seen in Fig. 8(a)
that the algorithm converges fast in the beginning, while the
change becomes insignificant after some iterations (e.g., 30
iterations for 5 users). Let us relax the convergence condition
by taking ∆ as 0.001% of the initial energy cost, i.e., the
algorithm is assumed to reach the convergence when there
is no change larger than 0.001% of the initial energy cost for
many consecutive rounds. Table 3 shows convergence times
by varying the number of users. We see that the execution
time is reduced a lot comparing to the case when ∆ = 0 (as
seen in Table 2). Our algorithm takes around 100 seconds
for 1000 users.

5.2 Analytical Results on Grim Strategy
Fig. 9(a) shows how the probability of playing the next
game (i.e., δ) depends on α and λ, which are the payoffs
in the cases of cooperation and deviation. We consider two
different βs, which represent the payoff while the dishonest

TABLE 3
Execution time in relaxed convergence condition

Users Iterations Time (Seconds)
25 1713 0.21
50 5207 0.56
100 20831 2.02
500 471476 21.87
1000 2122834 102.56

group lies and while the honest group continues to coop-
erate cooperates, respectively. We take β as a ratio with
respect to α. In one scenario, β is 1.5α, while in the second
scenario β is 2α. We also consider λ as a percentage of
α. We vary λ from 0% of α to 100% of α. In Fig. 9(a),
we see that δ increases exponentially with the decrease of
the difference between α and λ (i.e., increase of the ratio
between them). When there is no difference, i.e., λ is equal to
α, the game must be (i.e., δ is 1) played infinitely. Remember
that Theorem 3 shows that if δ ≥ 1, i.e., α ≤ λ, the
grim strategy is not required and deviation will always be
preferred to cooperate.

We also calculate the minimum number of times or
repetitions, n that the game needs to be played to neu-
tralize the benefit of dishonesty by applying the grim or
punishment strategy. We calculate n by solving the equation
β − α = n ∗ (α− λ). Here, β − α is the benefit of deviating,
while α − λ is the loss due to the punishment strategy.
Fig. 9(b) shows the value of n in different cases by varying
λ. It shows that the closer λ is to α, the higher is n. This
behavior states that the participation of a player should be
ensured to be sufficiently long participation, so that after
any deviation a node has to play for a number of times until
the extra benefit received from deviation become zero due
to the punishment strategy.

6 DISCUSSION

In this section, we discuss about some points regarding our
proposed solution for secure and private energy consump-
tion scheduling.
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6.1 A utility collector based energy consumption
scheduling

Smart meters often forms a mesh network and they are
connected to a data collector through this mesh network.
A common framework for the communications often in-
cludes home area networks, building area networks, and
neighborhood area networks, where we need many different
communications between meters before sending data to the
grid [23]. If we consider the usage data aggregation only, a
smart meter needs to send its data to the collector through
other meters, which does not preserve the privacy. There-
fore, an aggregation scheme taking the help of a collector
still needs to apply some privacy-preserving protocols. In
addition, it is good to have privacy as well as resiliency
against single node failure. Therefore, we choose distributed
algorithm for optimal scheduling of energy consumptions.
The similar motivation has been presented in previous
works, such as [9]. Moreover, the collector is responsible
for sending individual billing data and command controls
to and from the meters and utility or control center. Thus, it
will be overwhelming for a collector to process the optimal
scheduling of energy usage. In our proposed mechanism,
we employ a trusted third party only when there is a
suspicion of cheating.

6.2 The existing security in the smart metering commu-
nication

A utility collector often sends collected usage data to the
utility center by creating a secure channel with the utility
server. However, in practice such secure channel is yet to be
implemented in many places properly or fully, particularly
for the communication among smart meters and collectors.
For example, LonTalk is often used for communication
among meters and collectors, which mainly ensures au-
thentication of the two communicating parties [24]. After
all, the privacy is not considered as a concern in this com-
munication which is mainly taken place from a meter to a
collector for reporting usage data to the utility center. On
the other hand, the optimal scheduling protocol is executed
among nodes (smart meters), where each node needs to
know and use the received data for the optimal scheduling
of energy consumptions. Therefore, the security, integrity,
and privacy issues are required to be addressed together
and comprehensively taking the protocol execution into
consideration. In our work, we identify the potential threats
of eavesdropping and false data injection with respect to
the optimal energy usage scheduling protocol and thus
provide a defense mechanism by ensuring data privacy
along with the data authentication and integrity. We also
provide security against semi-honest participating nodes,
especially when they provide false information about their
potential energy usage.

6.3 Scalability of the proposed energy consumption
scheduling algorithm

From our simulation results, we find that the number of
iterations to reach the convergence point grows rapidly in
the number of users. However, we also find that the opti-
mization process starts to converge after few iterations (e.g.,

only 5 to 10 iterations for 5 users), and further convergence
becomes negligible after some iterations. Thus, the partici-
pating nodes can relax the convergence condition to stop the
optimal scheduling process early within an acceptable time
frame (as shown in Table 3). In addition, our cluster based
solution keeps the size of the participating nodes in the
MPC process small. Thus, the application of MPC has less
impact on the protocol convergence time with the increase
of the number of users. Moreover, parallel executions are
also possible in such a cluster based design, which can
significantly reduce the convergence time.

7 RELATED WORK

In this section, first we briefly discuss the research done so
far for optimizing the energy usage cost. Then, we present
a brief discussion on the research work that address the
security and privacy problems related to this area.

M. Fahrioglu et al. proposed a game [3] that models
the interaction between a utility and its customers to let
the customers help a utility solve a variety of problems. K.
Herter in [4] proposed a mechanism to minimize the gener-
ation cost with the indirect interaction between the energy
users and the energy provider by providing incentive for
using energy at off-peak hours with the help of time-varying
energy prices.

A. Gomes et al. discussed a load control strategy in [25].
The paper implemented the elastic electrical price. The
authors pointed out that the complexity is increased by
the diversity and volatility in power systems, because the
individuals have different aim.

N. Ruiz et al. in [7] introduced a direct load control
algorithm based on linear programming to operate the
virtual power plant composed of a large number of users
with load reduction capabilities. The author in [26] made
an investigation on relationship between the critical-peak
pricing and the households with different income and usage
in California State. This work justifies the need of a good
cost function which can affect the behavior of users and their
usage. However, the automation of the optimal demand side
management solely by the interactions among the partici-
pating users (i.e., without an involvement of the utility) can
offer an open, independent, and creative solution.

Mohsenian-Rad and Leon-Garcia proposed an optimal
and automatic residential energy consumption scheduling
framework in [27] that minimizes the electricity payment
as well as the operational waiting time of each household
appliance under a real-time pricing model. The authors
addressed a similar problem in [28], [9] for autonomous
demand side management within a neighborhood. They
considered the deployment of energy consumption schedul-
ing devices in smart meters, which can communicate with
each other. The game theory is applied to distributively
find the optimal consumption scheduling for all the users.
There are also other autonomous demand side management
solutions presented by different researchers in [11], [12],
[13], [14], [15]. In this solutions, the overall energy produc-
tion or usage cost is minimized by controlling the energy
consumption directly with optimal scheduling or indirectly
with suitably chosen energy prices. Another demand re-
sponse system is designed in [29] by minimizing the peak-
to-average ratio of the aggregate load demand.
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In [19], fairness in autonomous demand response is
discussed based on the contribution that a user makes
in achieving the system’s global objective. However, none
of these algorithms addresses the security problems intro-
duced by their proposed algorithms.

Li et al. presented a distributed data aggregation process
for smart meters involved in transmitting data from a set of
meters to the data collector [30]. To protect user privacy,
they applied homomorphic cryptography. So, the meters
participating in the aggregation cannot see intermediate
results. However, their solution is costly and it cannot solve
the security issues other than privacy found in our problem
domain. In [31], the authors showed that it is possible to
extract the detail information about the household activities
of a customer without any prior knowledge. In order to
secure the customer’s privacy, the authors also proposed
a homomorphic encryption based zero-knowledge billing
protocol for smart meters. Raj et al. proposed a privacy
preserving approach by perturbing the usage data while
meeting the utility needs [32]. Sankar et al. in [33] intro-
duced the competitive privacy problem in distributed state
estimation at the regional transmission organizations.

Unlike above works, we proposed a lightweight MPC
based data aggregation protocol that solves privacy as well
as data integrity problems. In addition, with respect to the
data integrity, we addressed the need of the participants’
truthfulness in such protocols and proposed mechanisms to
ensure this truthfulness by punishing for lying. Although
we focused on the optimal scheduling of customers’ energy
consumption, our work is applicable to other problems in
smart grids that need data aggregation among the partici-
pants.

8 CONCLUSION

This paper has presented a mutually exclusive cluster
based solution for the optimal energy management problem,
which can solve the security and privacy threats found
in the earlier proposed solutions. Our solution provides
data privacy, as well as protection from false data injec-
tion, i.e. data integrity. Comparing to the existing demand-
side management solutions, the proposed approach is also
highly efficient as in our proposed solution the running time
increases almost linearly with the increase of the number of
users. We have also presented an example which shows that
a user participating in the optimization process can benefit
by lying about his usage if the smart grid uses a per-slot
based charging mechanism. We have proved formally that a
dishonest node can make benefit by lying about usage with
per-slot based charging mechanism. We have proved that
if a user cannot be untruthful about his total usage, then
he cannot get any incentive by lying about the distribution
of usage in different time slots. We have proposed a veri-
fier based solution in order to detect malicious node who
declared false information about its usage. We have also
analyzed a grim trigger strategy solution for ensuring the
truthfulness, that can help smart grids to build incentive-
based charging mechanisms. These mechanisms can be de-
signed in future research works by choosing appropriate
subscription period, reward and punishments values.
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