
SmartAnalyzer: A Noninvasive Security Threat
Analyzer for AMI Smart Grid
Mohammad Ashiqur Rahman, Padmalochan Bera, Ehab Al-Shaer

Department of Software and Information Systems
University of North Carolina at Charlotte

Email: {mrahman4,bpadmalo,ealshaer}@uncc.com

Abstract—The Advanced Metering Infrastructure (AMI) is
the core component in the smart grid that exhibits a highly
complex network configuration comprising of heterogeneous
cyber-physical components. These components are interconnected
through different communication media, protocols, and secure
tunnels, and they are operated using different data delivery
modes and security policies. The inherent complexity and het-
erogeneity in AMI significantly increase the potential of security
threats due to misconfiguration or absence of defense, which may
cause devastating damages to AMI. Therefore, there is a need for
creating a formal model that can represent the global behavior
of AMI configuration in order to verify the potential threats.

In this paper, we present SmartAnalyzer, a security analysis
tool, which offers manifold contributions: (i) formal modeling of
the AMI configuration including device configurations, topology,
communication properties, interactions among the devices, data
flows, and security properties; (ii) formal modeling of AMI invari-
ants and user-driven constraints based on the interdependencies
among AMI device configurations, security properties, and se-
curity control guidelines; (iii) verifying the AMI configuration’s
compliances with security constraints using Satisfiability Modulo
Theory (SMT) solver; (iv) generating a comprehensive security
threat report with a possible remediation plan based on the
verification results. The accuracy, scalability, and usability of
the tool are evaluated on an AMI testbed and various synthetic
test networks.

I. INTRODUCTION

Smart grid provides innovative and efficient energy man-
agement services that offer operational reliability and value-
added advantages to both customers and energy providers.
The potential market for smart grids shows that it will be the
most widely deployed critical infrastructure in the 21st century.
AMI is the major component in a smart grid that, unlike the
traditional networks, consists of heterogeneous devices, such
as smart meters, intelligent data collectors, headend systems,
hosts, routers, firewalls, etc. AMI devices communicate with
one other through various communication protocols, physical
media, and secure tunnels. These devices transfer energy usage
data following different modes of data deliveries, which are
controlled by alternative security policies. Security attacks on
such networks due to misconfigurations or constraint viola-
tions have the potential to cause critical damages including
power outages and destruction of equipments [5][11].

In this work, we develop SmartAnalyzer, an automated secu-
rity analysis tool for AMI smart grid network, that takes AMI
configuration and organizational security requirements as in-
puts; formally models the configurations and various invariants

Fig. 1. A typical AMI smart grid network.

and security constraints; and verifies the compliances of the
configurations with the constraints using satisfaction checking.
The tool generates a comprehensive threat report that includes
the traces and reasoning behind various constraint violations
and potential reconfiguration plans. The performance of the
tool is analyzed on various real and synthetic data.

A. Background, Challenges, and Objective

Fig. 1 shows the general structure of an AMI that consists
of smart meters (SM), intelligent collectors (IC), and headend
system (HS) as the main components. Smart meters must be
configured to perform security pairings with a specific IC,
establish secure connections, monitor and report energy usage
data periodically. ICs are configured to collect the data from
a group of meters and to forward the data to a headend over
secure connections. They forward control commands, patches,
etc from the headend to the meters. There is one or more
firewall(s) for restricting access between AMI and the energy
provider’s utility network. AMI devices transfer data using
different modes of data delivery. Fig. 2 and Fig. 3 collectively
present a partial template of AMI configuration. It shows
the operational and security properties of AMI components
including the network topology. These properties are described
later in Section III.

AMI networks are more complex than traditional networks
mainly due to the following reasons. Firstly, AMI is a hybrid

2

Fig. 2. An example data of AMI topology configuration.

network consisting of (1) heterogeneous devices, such as
meters, collectors, firewalls, routers, IPSec gateways, etc, (2)
heterogeneous links of power lines, wired, and wireless, and
(3) heterogeneous protocols, such as LonTalk (meter-IC) and
TCP/IP (IC-headend). Secondly, AMI network involves vari-
eties of data stream types, such as power usage data, control
commands, s/w patches, which exhibit different priorities and
resource requirements. Thirdly, unlike policy based Internet
forwarding, data delivery in AMI is time-driven or request-
driven that follows specific schedules. For example, as shown
in Fig. 2, meter m00003 reports data periodically every 40
seconds starting at 15 seconds from the base time. AMI has
to be configured carefully to synchronize the data delivery
without overflowing the network or its devices. Moreover,
AMI network must be accessible from the utility network for
different purposes like management, patching, etc. The energy
users from Home Area Network (HAN) can also access AMI
via Internet or smart meters.

The correct functioning of AMI stands on consistent and
secure execution of tasks in time. The safe security config-
uration depends not only on the local device parameters but
also on the secure interactions and flows of these parameters
across the network. There is a significant number of logical
constraints on millions of configuration parameters, which
need to be satisfied to ensure secure interactions among AMI

Fig. 3. An example data of AMI (security) policy configuration.

components. These constraints represent system invariants and
user-defined security controls (i.e., the organizational security
requirements). Implementing these constraints in a scalable
manner is one of the major challenges in smart grid security.
An effort has been made by the government, DHS AMI Task
Force [2] and NIST [3], to develop guidelines for more than
300 security controls. NISTIR 7628 provides guidelines for
ensuring trusted path, resource availability, boundary security
protection, etc, towards controlling different security threats.
However, the manual analysis and enforcement of these con-
trols can be overwhelming and potentially inaccurate due to
high potential of human errors.

Researchers proposed different security analysis tools
for analyzing misconfiguration problems in traditional net-
works [12][8]. These tools do not model complex heteroge-
neous configurations like time-driven data forwarding and dif-
ferent security controls specific to a smart grid. The objective
of this work is to develop an automated tool, SmartAnalyzer
that will allow energy providers to objectively assess and
investigate AMI security configuration for identifying and
mitigating potential security threats and to enforce AMI op-
erational and organizational security requirements. The major
technical novelty of the tool lies in its capability of analyzing
various safety critical constraints on AMI network, such
as (i) data overwrite protection; (ii) device scheduling and
cyber bandwidth constraint; (iii) assured data delivery; and
(iv) data freshness. Apart from these, the tool is capable of
verifying various basic security properties like trusted path,
data integrity, confidentiality, etc. Most importantly, the tool
uses SMT based formal analysis engine as the core that
provides proof-based threat report as the outcome, which can
be comprehensively used for fixing the errors.

The rest of the paper is organized as follows. We present the
architecture and brief functional description of SmartAnalyzer
tool in Section II. The formal modeling of AMI components,
network topology, and data delivery modes is presented in
Section III. The following section presents the modeling
and analysis of various security controls in AMI. Section V
presents the evaluation of our tool. Section VI describes the
related works on smart grid security analysis. Finally, we write
the conclusion and the future work in Section VII.

3

II. SMARTANALYZER ARCHITECTURE

Fig. 4. The architecture of SmartAnalyzer.

SmartAnalyzer is an automated security analysis tool for
AMI smart grid that has the following functionalities:

• Providing an extensible global model abstraction capable
of representing millions of AMI device configurations.

• Formal modeling and encoding of various constraints into
SMT logic.

• Verifying the satisfaction of the constraints with AMI
configuration using SMT solver.

• Identifying potential security threats from the constraint
violations and providing remediation plans for security
hardening by analyzing the verification results.

SmartAnalyzer architecture is shown in Fig. 4. First, the tool
parses given AMI configuration template (e.g., Fig. 2 and Fig.
3) and encodes it into SMT logic. The configuration template
is a CSV file. It consists of the device configurations (based
on abstraction), topology, communication between the devices,
data delivery schedules in the network, etc. The model abstrac-
tion is done by exploiting the correlation between the config-
uration parameters of different AMI devices. SmartAnalyzer
formally models the organizational requirements and various
security guidelines (such as from NISTIR) as AMI invariant
and user-driven constraints; and encodes these constraints into
SMT logic. Then, the tool (verifier module) uses Yices SMT
solver [13] to verify these constraints with the configurations.
A comprehensive threat report is generated based on the
verification results. Finally, the tool (hardener module) creates
a remediation plan by systematically analyzing the unsat-core
traces produced by the SMT solver (when the verification is
unsatisfied), which helps the administrators in reconfiguring
AMI by directly fixing the configuration values or further
incorporating new security alternatives.

III. MODELING AMI CONFIGURATION

A. Modeling AMI Physical Components

In this subsection, we present the formalizations of different
AMI device configurations.

Smart Meter: A meter class is identified by an Id and its
profile SM is represented as a conjunction (∧) of different
parameters shown in Table I. The vendor type (i.e., Echelon,
GE, etc.) is represented by the parameter Type. We represent
the sampling information of a meter using SInfo that consists

TABLE I
FORMAL DEFINITION OF AMI METER AND COLLECTOR

Smart Meter:

SMi ⇒ Typei ∧ Patchi ∧ SRatei ∧Modei ∧RSchei∧
Authi ∧ Encri ∧ Servi ∧ CommProtoi ∧ TRatei

Patchi ⇒
∧

j=0...
Patchi,j

SRatei ⇒ SSizei ∧ STimei

RSchei ⇒ RScheBasei ∧RScheInti

Authi ⇒
∧

j=0...
(AAlgoi,j ∧AKeyi,j)

Encri ⇒
∧

j=0...
(EAlgoi,j ∧ EKeyi,j)

Servi ⇒
∧

j=0...
SPorti,j

CommProtoi ⇒
∧

j=0...
CommProtoi,j

Intelligent Data Collector:

ICi ⇒ Typei ∧ Patchi ∧BufSizei ∧Modei ∧RSchei∧
PRSchei ∧Authi ∧ Encri ∧AttachSMi ∧ LinkToSMi∧
AttachHSi ∧ Servi ∧ CommProtoi ∧ TRatei

· · · · · · · · ·
PRSchei ⇒

∧
j=0...

(PScheBasei,j ∧ PScheInti,j ∧RDevi,j)

ConnSMi ⇒
∧

j=0...
(CSMIdi,j ∧ CSMNumi,j)

of two components, sampling size (SSize in KB) and sampling
time (STime). A meter can deliver data to a collector in
two different modes: pull and push. In pull mode, the meter
reports data based on the request from the collector that
follows a specific pull schedule of the collector. On the other
hand, in push mode, the meter reports data to the collector
(without waiting for request) based on its own report schedule.
This reporting mode is captured by Mode. The reporting
time schedule of a meter (in push mode) is modeled using
RSche that consists of RScheBase and RScheInt. This indicates
that the meter will report periodically in a regular interval
of RScheInt starting from RScheBase after the base time.
To achieve end-to-end security, the communicating devices
must agree in their authentication and encryption properties.
We model the authentication properties of a meter using the
parameter Auth as conjunction of algorithm (AAlgo) and key
length (AKey). A meter may support multiple authentication
properties. Encryption property is modeled similarly as Encr.
The running services and communication protocols associ-
ated to a meter are represented by Serv and CommProto
respectively. The parameter Patch denotes the patches that
are installed in the meter. The maximum transmission rate
(in Mbps) of a meter is denoted by the parameter TRate. The
formalization of a meter class is shown in Table I.

Intelligent Data Collector: A collector class profile IC is
represented as a conjunction of different parameters, which
include all parameters of meter class profile except the sam-
pling information. In addition, each collector may have a pull
schedule that is represented by the parameter PRSche. It has
three components: PSBTime, PInt, and RDev, which denote
that the collector periodically pulls data from reporting device
(RDev, a meter) starting at PScheBase with interval PScheInt.

4

TABLE II
MODELING OF ZONE ITS RELATION WITH AMI DEVICES

Zone:

Zonei ⇔ ZSni ∧ ZMemi ∧ ZGwi

ZSni ⇒ Ipi,j ∧Maski,j

ZMemi,j ⇒ ZMIdi,j ∧ ZMNumi,j

· · · · · · · · ·
ZMemi ⇒

∧
j=0...

ZMemi,j

Representation of a source:

(S ⇔ Id ∧ ZId) ⇒ (Id ⇔ ZMId)

A collector has a buffer for storing the report data from
different meters. BufSize represents the buffer size (in KB).
The parameter ConnSM is a conjunction of the meter classes
(CSMId) and their numbers (CSMNum), which are connected
to the collector. LinkToSM represents the ID of the link (refer
to Section III-B) that connects collector to the meter. The
parameter AttachHS represents the headend system to which
data is reported by the collector.

Headend System: A headend system class profile HS is a
conjunction of the parameters: Type, OS, Mode, TRate, Patch,
PRSche, Auth, Encr, Serv and CommProto. These properties
are modeled as similar to those of meter/collector.

Host Devices: AMI network contains different type of
hosts, such as (1) hosts of home area network (enterprise
clients), (2) enterprise internal hosts, (3) enterprise application
servers (backend systems), and (4) external hosts from Inter-
net. Hosts have considerably less parameters. For example, an
enterprise client host class profile has OS, Auth, Encr, Serv,
CommProto and TRate parameters only.

B. Modeling AMI Network Topology

AMI topology defines the physical and logical connectivity
between different AMI devices.

Router, Firewall and IPSec: We model router (R), firewall
(F), and IPSec (IS) devices similar to [12]. We only introduce
the traffic limiting capability of a firewall in the model using
the parameter FwLim along with its action (FwAct) in its
policy (FwPolicy). Router selects the next-hop (RNext) for a
particular traffic based on its forwarding policy (RPolicy).

Link: A link is identified by an ID (LId). Its profile is
a conjunction of NodePair (i.e., the node-pair connected by
the link) and LinkStatus (i.e., up or down). LId binds the
specified link type to the predicate LinkProp that represents
the properties of that link including MediaType (i.e., wireless,
ethernet, etc), SharedStatus (i.e., shared or not), CommMode
(i.e., half-duplex, full-dulex, etc) and LinkBw (in Mbps).

Zone: We model logical zone as a collection of similar AMI
devices. Each zone has an ID (ZId). The profile of a zone
(Zone) comprises of three parameters: ZSn, ZMem and ZGw.
The parameter ZSn denotes an IP-address (with subnet Mask)
that covers all devices in that zone. ZMem represents the IDs
of different device classes and the number of devices under

each class that belong to the zone. ZGw denotes the gateway
router ID for that zone. The formalization of a zone, Zonei
is represented in Table II. Any source/destination node of a
traffic is represented as a conjunction of its Id and ZId. The
number of traffic source/destination depends on the number of
zones and the number of classes in the zones. For example, if
there are 50 zones and 4 collector classes per zone on average,
then there are 200 possible source/destination collectors. In the
rest of the paper, we refer to a source/destination (especially
in traffic) as a node associated with its zone. It is to remember
that meters are directly associated to a collector.

IV. AMI THREAT ANALYSIS MODEL

This section describes the potential security threats on AMI
and the modeling of associated security constraints. Finally,
we present the constraint verification methodology in AMI.

A. Threats on AMI
It is well documented that configuration errors cause 50%-

80% of vulnerabilities in cyber infrastructure [7]. There are
various potential threats on AMI networks due to noncompli-
ance/violation of different constraints.

Reachability and Integrity Threats: To achieve successful
data delivery, reachability must hold between the sender and
the receiver. Data Integrity is important, since its violation not
only can cause incorrect billing but also can launch malicious
control commands towards AMI that may result in massive
power outage. So, data should be delivered satisfying end-
to-end integrity. Moreover, inconsistencies in authentication
and encryption parameters (say, algorithm) may cause service
disruption. Reachability intuitively ensures the correctness of
any IPSec based tunnel existing in the path.

Availability Threats: Improper scheduling of data delivery
between meters and collectors can lead to buffer overflow
and data loss in the collector side. Moreover, this can cause
delay in data delivery, even data loss at the endpoints due to
limited link bandwidth. For example, if UDP protocol is used
between a collector and a headend, then improper scheduling
may allow a large number of nodes transferring data to the
headend, which can flood links on the path and consequently
cause data loss. In this case, use of TCP protocol will create
congestion, which in turn lead to delay in reporting, data loss
in the sender side (if data rate is higher than the delay). The
main purpose of AMI is to deliver clients’ power usage data
to the provider’s side. Hence, the resource availability threats
can be very devastating.

Common Network Threats: Common network threats are
endpoint DoS, link flooding, wireless link jamming. In AMI,
a large number of compromised collectors can launch DoS
attack to headend. It is infeasible to provide protection against
any number of compromised collectors. Constraints can limit
the possibility of such attack. Controlling these threats require
exploring the use of network limiters.

B. Modeling AMI Security Constraints
Appropriate modeling of the constraints is required to

protect AMI from different security threats. We classify these

5

TABLE III
FORMALIZATIONS OF REACHABILITY AND PAIRING CONSTRAINTS

Reachability Constraint:

ForwardX,Y,TrS,D,TrR ⇒
LinkX,Y ∧
(((X ⇔ S) ∧ (ZGwS ⇔ Y)) ∨ (Y ⇔ D)∨
(RX ∧RPolicyX,TrS,D

∧ (RNextX ⇔ Y))∧
((FX ⇒ FwPolicyX,TrS,D

∧ FwActX∧
(FwLim ⇒ (TrR ⇔ min(LimV al, LinkBwX,Y))))∨
(¬FX ⇒ (TrR ⇔ LinkBwX,Y)))

ReachableA,B,TrS,D,TrR ⇒
ForwardA,B,TrS,D,TrR∨
(∃C,ForwardA,C,TrS,D,TrR1 ∧ReachableC,B,TrS,D,TrR2∧
(TrR ⇔ min(TrR1, T rR2))

ReachabilityConstrTrS,D,TrR ⇒ ReachableS,D,TrS,D,TrR

Pairing Constraint:

AuthPairingS,D ⇒
(AAlgoS ⇔ AAlgoD) ∧ (AKeyS ⇔ AKeyD)

EncrPairingS,D ⇒
(EAlgoS ⇔ EAlgoD) ∧ (EKeyS ⇔ EKeym,D)

ProtoPairingS,D ⇒
(Proto ∈ CommProtoS) ∧ (Proto ∈ CommProtoD)

PairingConstrS,D ⇒
AuthPairingS,D ∧ EncrPairingS,D ∧ ProtoPairingS,D

constraints into invariant and user-driven constraints. Many of
these constraints are mapped to the NISTIR [3] guidelines.

1) Invariant Constraints: There are various invariant con-
straints based on connectivity, data delivery schedule, resource
availability, etc, between AMI components. These constraints
must be satisfied for any successful communication.

Reachability Constraint: Reachability must hold between
a pair of devices, if data is required to be transmitted between
them. For example, a meter should be able to reach a collector
to deliver the report to the collector. Similarly, there should
be reachability from collector to headend, so that the collector
can deliver the report to the headend. This constraint intuitively
checks the links between a pair of devices along with satisfac-
tion of routing/security device policies. The formalization of
general reachability constraint is shown in Table III. We first
define the Forward constraint that checks whether a specific
traffic TrS,D (i.e., from S to D) can be transferred from a
node (X) to another node (Y) (like state transition). Then, we
define Reachable and the reachability constraint (Reachabil-
ityConstr) on top of this. In the constraint formalization, we
also model the maximum possible transmission rate (TrR) by
taking the minimum bandwidth of the links across the path
along with the limits that may imposed by a firewall.

Connectivity Pairing Constraint: Consistent pairing be-
tween a meter and a collector is required over reachability
for successful communication. This constraint is considered
as conjunction of security pairing and protocol pairing. In
words, it states that the authentication and confidentiality
properties of the communicating devices should match and
they have a common protocol to communicate. For example,
in Fig. 2, although there are 4 meters of class m000123 are

TABLE IV
FORMALIZATIONS OF SCHEDULE AND RESOURCE CONSTRAINTS

Schedule Constraints:

MeterSampConstrM ⇒
SMM ∧ (ModeM ⇒ ((STimeM ≤ RScheIntM)∧
(RScheBaseM ≤ RScheIntM)))∧

((SSizeM/ST imeM) ≤ TRateM)

CollectorPullScheConstrC ⇒
ICC ∧ (((M ⇔ CSMIdC) ∧ ¬ModeM) ⇒ PRScheC)

Resource Constraints:

(TotalSDataC ⇔
∑

M
SDataM) ⇒

(M ⇔ CSMIdC) ⇒
(SDataM ⇔ (SSizeM × CSMNumC)))

CollectorBufConstrC ⇒
ICC ∧ (BufSizeC ≥ TotalSDataC)

(TotalSRateC ⇔
∑

M
SRateM) ⇒

(M ⇔ CSMIdC)∧
(SRateM ⇔ ((SSizeM/ST imeM)× CSMNumC)))

CollectorTrRConstrC ⇒
ICC ∧ (TrRC ≥ TotalSRateC)

CollectorBwOutConstrC ⇒
ICC ∧ (TotalSRateC ≤ LinkBwC,ZGwC

)

connected with the collector c0003, they are not allowed to
communicate as the violation of security pairing will occur
due to mismatch in their authentication properties (i.e., auth0
and auth1). Similarly, a host from HAN will not be able to
communicate with a meter, if that host does not support the
LonTalk protocol, which is the only protocol supported by a
meter. PairingConstr in Table III checks these issues.

Schedule Constraint: The schedule constraints (refer to Ta-
ble IV) ensure the basic correctness of report or pull schedule
configuration. The MeterSampConstr constraint states that the
sampling time and the reporting base-start time of a meter
must be less than (or equal to) its reporting interval, such
that no reporting is done without new data. It also verifies
that the sampling rate cannot be more than its maximum
transmission rate. If a meter is in push mode (Mode is true),
then it should have a reporting schedule. A similar constraint
(CollectorPullScheConstr) is true for a collector. If a collector
is connected with some meters, whose reporting mode are
pull (Mode is false), then the collector should have a pull
schedule for them.

Resource Constraint: There are different resource con-
straints (refer to Table IV), which are often relate to report/pull
schedules. The CollectorBufConsrt constraint states that the
buffer size of a collector should be greater than or equal to
the cumulative sampled data size of all the connected meters
to that collector. Otherwise, data loss must occur in collector
buffer under any report schedule. Similarly, the CollectorTr-
RateConstr constraint states that the cumulative sampling rate
of the connected meters cannot be more than the transmission
rate of the collector. The CollectorBwConstr constraint states
that the bandwidth of the link from the collector to its gateway

6

TABLE V
FORMALIZATIONS OF DIFFERENT USER-DRIVEN CONSTRAINTS

Data Loss (Collector Buffer Overwritting) Constraint:

(TotalRDataC ⇔ TotalSRateC × Period) ⇒
((ModeC ⇒ (Period ⇔ RSIntC))∨
(¬ModeC ⇒ (H ⇔ AttachHSC)∧ (Period ⇔ PRSIntH)))

OverwriteProtectConstrC ⇒
ICC ∧ (BufSizeC ≥ TotalRDataC)

Cyber Bandwidth Constraint:

(NumC ⇔
∑

Z
ZMNumZ) ⇒ (MIdZ ⇔ C)

(TotalRRateH,Sche ⇔
∑

C
(TotalSRateC ×NumC)) ⇒

(H ⇔ AttachHSC) ∧ModeC ∧ (RScheC ⇔ Sche)

LinkBwConstrH,X,Y ⇒
HSH ∧ (LinkBwX,Y ≥ TotalRRateH)

Assured Data Delivery:

AssuredDeliveryM,C,H ⇒
SMM ∧ ICC ∧HSH∧
PairingM,C ∧ (M ⇔ CSMIdC) ∧ReachableM,C∧
PairingC,H ∧ (H ⇔ AttacheHSC) ∧ReachableC,H∧
ResourceConstrM,C,H ∧ CyberConstrM,C,H

Quality of Delivery (Data Freshness) Constraint:

FreshnessConstrM,C,H,T ⇒
AssuredDeliveryM,C,H∧
((SumT1,T2 ≤ T) ⇒ (((T1 ⇔ RSIntM) ∧ModeM)∨

((T1 ⇔ PRSIntC) ∧ ¬ModeM))∧
(((T2 ⇔ RSIntC) ∧ModeC)∨
((T2 ⇔ PRSIntH) ∧ ¬ModeC))

Availability Protection Constraint (Limit DoS Attack):

(MaxTrRH,X,Y ⇔
∑

C
TrRC ×NumC) ⇒

CompromiseC ∧ (AttachHSC ⇔ H)∧
ForwardX,Y,TrC,H ,TrR

AvailProtectionConstrH,X,Y ⇒
ICC ∧ (LinkBwX,Y ≥ MaxTrRH,X,Y)

must be greater than or equal to the accumulated sampling rate
of all the meters connected to it. Otherwise, no schedule will
be possible without data loss.

2) User-driven Constraints: To achieve correct and secure
functioning of AMI network, there can exist different user-
driven constraints. We focus on AMI specific constraints.
Formalizations of these constraints are shown in Table V.

Data Overwrite Protection Constraint: This constraint
states that the aggregate report data of all the meters connected
to a specific collector must not flood the collector buffer within
the reporting interval. For example, in Fig. 2, c0005 collector
receives reports from 5 meters of m00129 class (sampling
rate: 20KB/30secs) and 5 of m0003 class (sampling rate:
18KB/40secs). Therefore, c0005 will receive 335KB (average)
data in every 60 seconds, which is to be stored in its buffer.
Now, based on the report schedule, collector pushes the data
to headend in every 1440 seconds. Thus, during this period,
in an aggregate 8040KB data will be sent to the collector
by these meters. This amount of data will flood the collector
buffer (size 80000 KB), which will in turn cause data loss
(i.e., initial 40KB report data will be overwritten).

Cyber Bandwidth Constraint: The LinkBwConstr con-
straint is to conform that the aggregate report rate of the
collectors reporting simultaneously due to matching report
schedule should not exceed the bandwidth limitation of the
network path (considering a link from X to Y) connecting
to headend (H). Violation of this constraint will cause link
congestion/DoS.

Assured Data Delivery: This constraint requires checking
the end-to-end data delivery (from a meter to a headend
through a collector) to satisfy the AMI global functionality.
This constraint intuitively implies the satisfaction of the fol-
lowing constraints: (1) reachability, (2) trusted path (successful
security pairing), (3) availability of resources (conjunction of
all resource constraints including data overwrite constraint
as ResourceConstr), and (4) synchronous reporting without
flooding the cyber towards the headend (conjunction of the
LinkBwConstr constraints across the path as CyberConstr). A
violation of these constraints can create failure in data delivery.

Quality-of-delivery Constraints: There are user-driven
constraints for ensuring the quality of delivery. For example,
the report freshness constraint (FreshnessConstr) restricts the
delivery of data within a specific time window, say, T along
with assured data delivery. A user can have constraint on the
quality of the trusted path. For example, This requirement can
be defined as the satisfaction of (i) end-to-end encryption level
based on key length (say, 256 bits); and (ii) specific single or
nested tunnel(s) (say, 2-level of nested tunnels) requirement.

Availability Protection Constraint: This constraint (Avail-
ProtectionConstr) ensures that if there are X number (or
portion) of AMI devices being compromised, assured data
delivery constraint is still preserved. It intuitively verifies that
DoS attack is not possible on links or endpoints, when number
of compromised nodes is no more than X (say, 5% collectors).

C. AMI Constraint Verification

The formalizations of AMI device configurations and secu-
rity properties are presented in Section III. We use Boolean
terms to encode the Boolean configuration parameters and
some integer parameters that can have very small range of
values. Remaining parameters are modeled as integer terms.
We normalize the parameters into integers that may take real
values (e.g., bandwidth). We use bit-vector terms for encoding
IP addresses. In some of the computations, we require mul-
tiplying/dividing two variables. But, Yices [13] SMT solver
does not support such non-linear operations. Thus, we encode
such operations by normalizing one of the variables to a small
set of possible values and applying the operation on the other
variable with one of those values by matching to the former
variable. After encoding the configuration parameters into
SMT variables, we model the configuration rules associated
with all AMI components. The complete AMI configuration
model represented by ModelConf . Finally, during verification,
we encode each AMI constraint under the same formalism.

SmartAnalyzer creates a verification query that checks the
satisfaction of the constraint, Qc, with the configuration model,

7

TABLE VI
A SIMPLE EXAMPLE OF RESOURCE CONSTRAINT VERIFICATION

(assert+ (M 0)) ;1
(assert+ (M 1)) ;2
(assert+ (= (MId 0) 0)) ;3
(assert+ (= (SSize 0) 15)) ;4
(assert+ (= (SInt 0) 30)) ;5
(assert+ (= (MId 1) 1)) ;6
(assert+ (= (SSize 1) 25)) ;7
(assert+ (= (SInt 1) 60)) ;8

(assert+ (IC 0)) ;9
(assert+ (= (CId 0) 10)) ;10
(assert+ (= (BufSize 0) 300)) ;11
(assert+ (= (CSMId 0 0) 0)) ;12
(assert+ (= (CSMId 0 1) 1)) ;13
(assert+ (= (CSMNum 0 0) 6)) ;14
(assert+ (= (CSMNum 0 1) 6)) ;15

(assert+ (⇒ CollectorBufConstr ;16
(forall (c::(subrange 0 0))
(⇒ (IC c)
(let ((a::int (CSMId c 0)) (b::int (CSMId c 1)))
(and (M a) (M b)
(⇒ (= (SSize a) 15) (= (SData c 0) (* (CSMNum c 0) 15)))
(⇒ (= (SSize a) 25) (= (SData c 0) (* (CSMNum c 0) 25)))
(⇒ (= (SSize b) 15) (= (SData c 1) (* (CSMNum c 1) 15)))
(⇒ (= (SSize b) 25) (= (SData c 1) (* (CSMNum c 1) 25)))
(>= (BufSize c) (+ (SData c 0) (SData c 1)))))))))

(assert+ CollectorBufConstr) ;17
(check) ; SAT

ModelConf . This query is encoded as the Boolean clause:
Qc ⇒ ModelConf .

The main portion of the SMT-LIB encoding of AMI config-
uration and the resource constraint (CollectorBufConstr, refer
to Table IV) is shown in Table VI. In order to keep the example
easy to grasp, we consider a tiny AMI configuration with two
meters, one collector, and one headend. In the example, we
show the verification of collector buffer constraint.

D. Verification Result Analysis and Hardening

SmartAnalyzer generates the verification results as either
satisfiable (sat) or un-satisfiable (unsat). In case of unsat,
SmartAnalyzer verification engine (verifier) provides an unsat-
core that basically represents the constraint violation traces
in the configuration. Then it systematically analyzes these
violation traces and generates a comprehensive threat report
for the overall AMI configuration. This report includes threat
sources, targets, violating rules, threat reasonings, and the
associated configuration values. Example of unsat-core for a
constraint violation and associated threat report (partial) is
shown in Table VII. This result corresponds to the example in
Table VI, except that the buffer size is set to 200.

In case of unsat, the hardener module checks max-sat by
assigning suitable weights to the assertions of the configuration
parameters that can be determined from the organizational
guidelines. Hardener creates remediation plan from the max-
sat output. It is worth mentioning that we use quantifiers for
the purpose of verifying some constraints. In such cases, Yices
often returns unknown instead of sat. This implies that there

TABLE VII
UNSAT-CORE OF THE EXAMPLE AND CORRESPONDING REPORT

SAT output:
unsat
unsat core ids: 1 2 3 4 6 7 9 11 12 13 14 15 16 17

Max-SAT output:
(Weights are only given to the assertions on the numbers of connected
meters and the collector buffer size as 1 and 2 respectively)
sat
unsatisfied assertion ids: 15
· · · · · · · · ·
(= (BufSize 0) 200)
(= (CSMId 0 0) 0)
(= (CSMId 0 1) 1)
(= (CSMNum 0 0) 6)
(= (CSMNum 0 1) 1)
· · · · · · · · ·

Corresponding Report:
Collector Buffer Constraint fails.
Buffer size (200) is less than the total sampling size (90 + 150) of ...
· · · · · · · · ·
If number of connected meters decreases, the constraint will be satisfied.
· · · · · · · · ·

is no constraint violation found by the solver. Hence, if the
result is not unsat, we consider that the model is satisfied with
the given constraints.

V. EVALUATION AND DISCUSSION

We evaluate SmartAnalyzer in terms of accuracy, usability
and scalability. We analyze the tool by evaluating different
constraints under real and synthetic configuration data.

A. Accuracy

Firstly, the accuracy of our tool is ensured by the use of
formal constraint satisfaction checking method. In addition,
we evaluate our tool with ground truth scenarios by deploying
it in a small AMI testbed created in our university [14].
The testbed setup typically represents a small subset of the
network shown in Fig. 1. We analyze some of the security
constraints, especially, data overwrite protection and cyber
bandwidth constraints. The results of our tool are cross-
validated with the real scenario. For the purpose of analyzing
the constraints, we slide the values of different configuration
parameters, such as (i) taking very low and high pull schedule
intervals for the headend, and (ii) changing the bandwidth
of the links from high to very low. We find some constraint
violations that lead to link flooding and data loss. In addition,
we inject high amount of data through simulation (by adding
multiple simulated collectors in the testbed) to observe its
effect on cyber bandwidth constraint. After observing the
constraint violations, we reconfigure the setup according to
the remediation plan and reevaluate the constraint to see the
effect. For example, in case of cyber bandwidth constraint
violation, we add traffic limit in firewall rules and observe the
resolving of link flooding. These tests significantly help us in
verifying the accuracy of the tool.

8

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
(i

n
Se

co
nd

s)

Network Size [Scale of Million]

Constraint Verification Time w.r.t. Network Size

Reporting Mode Constraint
Collector (Buffer) Resource Constraint

Reachability Constraint

(a)

 0

 2

 4

 6

 8

 10

 12

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
(i

n
Se

co
nd

s)

Network Size [Scale of Million]

Constraint Verification Time w.r.t. Network Size

Assured Data Delivery Constraint
Availability Constraint

(b)

 0

 1

 2

 3

 4

 5

 6

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
(i

n
Se

co
nd

s)

Network Size [Scale of Million]

Constraint Verification Time w.r.t. Network Size

Zone Size = 500
Zone Size = 1000
Zone Size = 1500
Zone Size = 2000

(c)

 0

 1

 2

 3

 4

 5

 6

 7

 500 750 1000 1250 1500 1750 2000

T
im

e
(i

n
Se

co
nd

s)

Zone Size

Constraint Verification Time w.r.t. Zone Size

Avg. Number of Classes = 5
Avg. Number of Classes = 10
Avg. Number of Classes = 15

(d)

 0

 5

 10

 15

 20

 25

 30

 35

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
em

or
y

(i
n

M
b)

Network Size [Scale of Million]

Required Memory Space w.r.t. Network Size

Without any Constraint
Collector Resource (Buffer) Constraint

Reachability Constraint

(e)

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 25 50 75 100 125 150

M
em

or
y

(i
n

M
b)

Number of Collector Classes

Required Memory Space w.r.t. Number of Classes

Without any Constraint
Collector Resource (Buffer) Constraint

(f)

Fig. 5. (a) Impact of network size (varying number of zones) on invariant constraint verification time, (b) Impact of network size on user-driven constraint
verification time, (c) Impact of zone size on constraint verification time, (d) Impact of number of collector classes per zone on constraint verification time,
(e) Impact of network size on memory requirement, and (f) Impact of number of classes on memory requirement.

B. Usability

The usability of SmartAnalyzer is evaluated by providing
it to different real-life experienced users and considering their
feedback. The main usability of our tool lies in the operational
efficiency. It allows users (i) to evaluate new AMI config-
uration, and (ii) to modify and reevaluate the configuration
within few seconds (particularly in 5-7 mouse clicks). The
input (configuration template) and output (threat report) of the
tool are simple to understand and are easy to use. In addition,
remediation instructions in the threat report allows a user to
reconfigure the data accordingly.

C. Scalability

We evaluate the scalability of SmartAnalyzer by analyzing
the time and space required in constraint verification by
varying the AMI network size. We consider the network size
as the total number of collectors in AMI (the number of
meters are proportional to the number of collectors). The
number of collectors depends on the number of collector zones
and their sizes. We consider only a single headend zone (10
headends of two headend classes) in the network. We take 100
and 50 meter and collector classes respectively, while each
collector is connected with 10 meters (of 2 random meter
classes) on average. Each collector zone consists of around
1000 collectors (of 5 random classes). We keep the values of
these parameters fixed in most of the experiments, except those
cases where their impacts on the scalability are analyzed.

Impact of network size: Fig. 5(a) and Fig. 5(b) show
constraint verification time w.r.t. network size. We show the

verification time for different invariant constraints (i.e., report-
ing mode, collector resource, and reachability) and user-driven
constraints (i.e., assured data delivery and availability protec-
tion constraint). A significant part of the constraint analysis
time is covered by the modeling (SMT logic encoding) time,
which is almost linearly dependent on the network size that
varies with number of zones. Verifications of some constraints
involves all (or a portion of) possible potential source/target
(refer to Section III-B) nodes that implicitly increase with
number of zones. Thus, the verification time of such kind of
constraints (e.g., reachability) increases more with the size
of the network than that of the constraints (e.g., collector
resource), which are involved with the class size only. Usually,
the user-driven constraint analysis time is more than the
invariant constraint analysis time (see Fig. 5(b)), since most
of the former constraints subsume the later constraints.

Impact of zone size and member classes: We evaluate
constraint verification time w.r.t. network size for different
network zone sizes. This analysis is shown in Fig. 5(c) with
respect to the reachability constraint. We observe that the
analysis time significantly reduces with the increase in the
number of collectors in the zone. This is due to the fact that
the number of zones decreases as the zone size increases,
which in turn decreases overall model size and the potential
sources/targets. Fig. 5(d) shows the constraint verification time
taking a fixed zone size and varying the number of average
classes per zone. We find that the time increases, if variation
of classes increases.

SMT space requirement: The space requirement (memory

9

used) of the SMT solver [13] is evaluated by changing the
network size (i.e., number of zones) and the number of
classes. Such analysis results are shown in Fig. 5(e) and
Fig. 5(f). We observe that the space requirement increases
linearly with the network size. Similar to the analysis time,
the space for constraint verification is sum of the space for
modeling of AMI configuration and that of for modeling a
constraint. The figures justify this by showing that less space
is required when no constraint is verified. The constraints
involving more quantifiers require larger memory space for
encoding. Fig. 5(e) shows such comparison between collector
resource and reachability constraints.

D. Discussion

SmartAnalyzer can successfully identify possible threats on
AMI by constraint satisfaction checking. It is highly scalable
with the network size. However, there is a couple of limitations
of the tool. First, we have used device and property level
abstraction for achieving scalability under large scale smart
grid configuration, which in turn may not provide fine-grained
attack path. Second, due to the use of Yices SMT solver as the
core analysis engine , we had to consider different bounds in
arithmetic computations. Moreover, the tool does not provide
the functionality for analyzing some of the inherent smart grid
security properties like LonTalk protocol configuration.

VI. RELATED WORK

Throughout the last decade, significant amount of
works [1][3][4] have been initiated on describing the interoper-
ability among heterogeneous smart grid components including
security issues based on different attack scenarios. These
works also describe the operational functionalities of AMI
components and energy providers internal system with guide-
lines for secured communication between them. McDaniel et
al. present the security and privacy challenges in smart grid
in [5]. This work reports that appropriate security policies need
to be enforced for communication between the home users
and the energy providers internal system. The authors in [6]
propose an artificial intelligent based approach for analyzing
risks in smart grid networks. However, in their analysis, they
do not consider network link capacity, bandwidth and different
communication modes of AMI components. Anwar et al. pro-
pose a framework [10] for modeling power grid and its control
elements using first order logic. This framework is capable of
evaluating power flows, overloading violations in smart grid.
Liu et. al. [9] present a study on false data injection attacks in
power grid. McLaughlin et. al. [11] presents an approach for
penetration testing on AMI systems. They develop archetypal
and concrete attack trees for energy fraud, denial of service
and targeted disconnect attacks. However, these works do
not analyze various misconfiguration problems and security
controls on power grid networks.

Analyzing an AMI system requires modeling of its configu-
ration and various security controls, which are more complex
than the traditional network. The survey reveals that no sig-
nificant research has been done on formal modeling of the

complex AMI configuration and analyzing various security
constraints on the configuration. Therefore, SmartAnalyzer is
a novel and useful tool for provably analyzing operational
consistency and security controls in AMI. Moreover, the
tool provides possible remediation plans for the constraint
violations, which can be used by the energy providers for
reconfiguration planning towards security hardening.

VII. CONCLUSION

Due to the heterogeneity in AMI device configurations and
emerging security threats on it, automated analysis of AMI
configuration is an important but challenging problem. In this
research, considering this challenge, we built SmartAnalyzer,
an automated tool for AMI configuration verification. First, we
analyze and identify different invariant and user-driven con-
straints, violation of which can cause various threats on AMI.
Then based on these constraints, we develop SmartAnalyzer
using SMT based formal logic. Under any constraint violation,
the tool generates a threat report that includes the reasoning of
the violation and the possible remediation plan. The accuracy
of the tool is evaluated in an AMI testbed through cross-
validation with the ground truth. We evaluate the scalability
of SmartAnalyzer in different test configurations. We achieve
significantly high scalability by applying the property level
abstractions in the model. We observe that the constraint
verification time lies within 10 seconds for a network of 1
million collectors. Our tool is highly usable as it requires only
few steps to analyze new configurations. In future, we plan to
explore AMI configuration synthesis problem that will satisfy
the necessary security constraints.

REFERENCES

[1] Security in the Smart Grid, ABB White Paper, ABB Inc. Cary, 2009.
[2] B. Brown et al. AMI system security requirements: V1.01 AMI-SEC

Task Force, 2008.
[3] NISTIR 7628: Guidelines for Smart Grid Cyber Security, Smart Grid

Interoperability Panel- Cyber Security Working Group, August 2010.
[4] AMI System Security Requirements: V1.01. AMI-SEC Task Force,

Available in http://osgug.ucaiug.org/utilisec/amisec/.
[5] Patrick McDaniel and Sean W. Smith, Security and Privacy Challenges

in Smart Grid, IEEE Security and Privacy, June, 2009.
[6] Y. Wang, D. Ruan, J. Xu, M. Wen and L. Deng. Computational Intel-

ligence Algorithms Analysis for Smart Grid Cyber Security, Lecture
Notes in Computer Science, Vol. 6146, p. 77-84, Springer, 2010.

[7] Richard Alimi, Ye Wang, and Y. Richard Yang. Shadow configuration
as a network management primitive. ACM SIGCOMM conference on
Data communication, 2008.

[8] X. Ou, S. Govindavajhala, and A. Appel. MulVAL: A Logic-based
Network Security Analyzer, 14th USENIX Security Symposium, 2005.

[9] Y. Liu, P. Ning and M. K. Reiter. False Data Injection Attacks Against
State Estimation in Electrical power Grids, The 16th ACM Conference
on Computer and Communications Security, November 2009.

[10] Z. Anwar, R. Shankesi and R. H. Campbell. Automatic Security As-
sessment of critical cyber-infrastructures, 38th Annual IEE/IFIP
International Conference on Dependable Systems and Networks, 2008.

[11] S. McLaughlin, et al. Multi-vendor Penetration Testing in the Advanced
Metering Infrastructure. ACSAC, USA, 2010.

[12] E. Al-shaer , W. Marrero , A. El-atawy and K. Elbadawi, Network
Configuration in A Box: Towards End-to-End Verification of Network
Reachability and Security. ICNP, 2009.

[13] Bruno Dutertre and Leonardo De Moura, The Yices SMT Solver, Tech-
nical Report, 2006, Available in http://yices.csl.sri.com/tool-paper.pdf

[14] AMI Smart Grid Testbed at UNC Charlotte,
http://www.cyberdna.uncc.edu/events.php.

