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Abstract—Advances in the unmanned aerial vehicle (UAV)
design and capability, as well as decreases in the manufacturing
cost, have opened up applications of UAVs in various fields, in-
cluding surveillance, firefighting, cellular networks, and delivery
purposes. The uniqueness of UAVs in systems creates a novel
set of trajectory or path planning and coordination problems.
Environments include many more points of interest (POIs) than
UAVs, with obstacles and no-fly zones. We introduce REPlanner,
a novel multi-agent reinforcement learning algorithm inspired
by economic transactions to distribute tasks among UAVs. This
system revolves around an economic theory, in particular an
auction mechanism where UAVs trade assigned POIs. We formu-
late the path planning problem as a multi-agent economic game,
where agents can cooperate and compete for resources. We then
translate the problem into a partially observable Markov decision
process (POMDP), which is solved using a reinforcement learning
(RL) model deployed on each agent. As the system computes task
distributions via UAV cooperation, it is highly resilient to any
change in the swarm size. Our proposed network and economic
game architecture can effectively coordinate the swarm as an
emergent phenomenon while maintaining the swarm’s operation.
Evaluation results prove that REPlanner efficiently outperforms
conventional RL-based trajectory search.

Index Terms—Unmanned aerial vehicles, reinforcement learn-
ing, path planning, trajectory optimization, swarm robotics

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are applicable to a wide-
ranging set of problems such as fire fighting, security moni-
toring, agriculture, edge computing, 3D mapping, and network
support [1]. All of these problems can be abstracted to a set
of partially observed points and must be traveled to, in the
shortest amount of time possible, and then some tasks must
be carried out in the vicinity of these points. More generally,
swarm surveillance missions are essential in both civilian and
military contexts, where solutions must be secure, reliable,
and efficient. The problem is computationally expensive as
solutions must be provided for each UAV and take into account
the paths of other UAVs to avoid collisions and use resources
efficiently. Current methods include swarm intelligence op-
timization (SIO), formal methods, convex optimization, and
graph-based methods [2], [3], [4]. Besides SIO, these methods
suffer from the glaring issue that all the participating UAVs
take commands from a single point, which, if compromised,
brings the entire system down. Thus, a framework is needed
that considers the UAV swarm’s characteristics from the
ground up to provide a more distributed, intelligent, and
reliable service.

∗Khalil and Byrne are the co-first authors of this paper.

The cutting edge of UAV swarm technology is reinforce-
ment learning (RL), which is used to control the agents for
executing versatile operations, e.g., simulating indoor envi-
ronment [5], proving various cellular internet [6] and data
harvesting [7] missions, avoiding collisions [8]. Each UAV
is controlled by its own agent, acting in its own interest, and
attempting to gain the most reward for itself. While all of
these papers frame the problem as a cooperative one, it is
immediately seen that agents are also competing for reward,
as an agent completing a shared point effectively removes
the opportunity for another agent to gain that reward and
potentially wastes fuel. It is natural to then frame the problem
in terms of game theory and agent-to-agent communications
as part of an economic game.

To utilize the above mentioned phenomenon, we propose
REPLANNER, an RL and Economic game-based trajectory
Planner for UAV swarms. In this framework, the agents enter
into bids for actions to take, allowing the swarm as a whole
to find the value of actions through pricing. As this emerges
from the interactions of agents, it is decentralized and comes
at a low computational cost. Furthermore, as we employ RL,
the agent can learn which strategies are effective in the context
of other agents’ strategies and the current configuration of the
environment. We evaluate the trajectory planning performance
between the standard q-learning and our economic variant. The
results show a 33% increase in path distance efficiency, an 18%
decrease in time to completion, and a 200% increase in reward
gain. According to the reward gain, our model adapts to its
directive to act in the environment far better than standard
Q-learning. In summary, our contributions are as follows:
• We design and implement REPLANNER, a novel dis-

tributed optimization technique, which mimics economic
exchange to reassign objects to agents.

• We introduce an auction mechanism for distributed tra-
jectory or path planning system, which anticipates com-
petitive as well as cooperative strategies from agents.

• We evaluate the proposed REPLANNER framework with
respect to flight duration, traveled distance, and goal
completion. The evaluation results show that REPLANNER

was more efficient than standard Q-learning.
• We conduct a case study through the AirSim [9] simulator

to validate the performance of the proposed framework.
The codes related to the evaluation as well as the simu-
lation are available at [10].

The rest of the paper is organized as follows: We discuss
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Fig. 1. Path-planning, where two UAVs efficiently avoid a collision.

preliminary information in Section II. The related works are
discussed in Section III. We introduce our proposed REPLAN-
NER framework in Section IV. In Section V, we discuss the
technical details of the frameworks and the complete analysis
of our algorithms. In Section VI, we explain the evaluation
setup and dataset. The empirical analysis and findings are
formulated in Section VII. Finally, we conclude the paper in
Section VIII.

II. BACKGROUND

In this section, we discuss the preliminary information
that helps to explain the problem domain and the proposed
REPLANNER mechanism.

A. UAV path-planing

Path planning is referred to the mechanism of finding an
optimal path between source and destination, and it is one
of the most important problems to be explored in the UAVs’
domain. The main objective of UAV path planning is to design
a cost-effective flight path that meets the UAV performance
requirements with minimal probability of being destroyed
during the flight [11], including providing a collision-free
environment to the UAVs, as presented in Fig. 1. There are
numerous path-planning methods for UAVs to navigate in the
obstacles-filled environment.

B. Reinforcement learning

Reinforcement learning refers to the field of Machine
learning that deals with the mapping of situations to actions
in order to maximize the achievement of the actor. In RL,
an agent interacts with its environment to learn an optimal
policy that maximizes expected cumulative rewards for a
given task [12]. The objective of RL is to maximize future
rewards. However, since an actor cannot predict the future
changes in its environment perfectly, value functions reflect the
actor’s empirical estimates for its future rewards. The distant
future rewards are often discounted temporally so that more
immediate rewards exert a stronger influence on the actor’s
behavior. The general architecture of reinforcement learning is
presented in Fig. 2, which has two main properties: learning
and playing [13]. In the continuous training phase of the

R-Learner World

Action

Feedback

Policy

RL Agent

Training

World

Action

Feedback

Q-valuesUpdate
state

Best
ActionState

Playing

Fig. 2. Reinforcement Learning Architecture

model, initially, the reinforcement learner (R-learner) does not
know which action will maximize the gain, as in most other
machine learning. It has to discover which actions are most
profitable by applying them. So it performs random actions
from a state and observes the incurred reward (or penalty)
using the feedback of that action from the environment. These
rewards (or penalties) are the Q-values for particular state-
action pairs, which define the policy. The RL agent, while
playing, uses this policy to predict which action is best in a
given state and learns through feedback from the environment.

C. Decision-Making: Economic vs. Reinforcement Learning

Decision-making refers to the mechanism that is used by
an actor to choose its actions. Economic theories of decision-
making attach numerical metrics to alternative actions. In this
way, the choices for specific actions can be better understood
as actions with maximum value will be selected more often
among all possible actions. These hypothetical quantities are
called utilities and can be applied to any kind of behavior.
An actor will always, by definition, choose the behaviors
that maximize the actor’s utility [14]. These theories behave
agnostically about how these utilities are determined. However,
they are presumably constrained by individual experience and
evolution [14]. Similar to utilities in economic theories, value
functions in RL theory refer to the estimates for the sum of
future rewards. Although both of these two approaches have
their own unique benefits, one assigns more weight to the
immediate reward while the other does it for future rewards.
In this work, we consider two types of actions performed by
the agent to maximize the reward. The agent will optimize the
trajectory by leveraging Q-learning algorithm-based RL and
will trade points of interest (POIs) with other agents depending
on the reward gain versus resource invested, utilizing the
economic decision making.

III. RELATED WORKS

Originally, the path-planning problems were solved by
framing the problem as a convex optimization problem and
utilized analytic and numerical techniques [15]. While it was
computationally expensive, a path need only be calculated
once, and so in effect, this was not a complex problem [15].



For realistic, complex situations, the model-free reinforce-
ment learning methods have become popular as it enables
an agent to autonomously learn an optimal policy through
trial-and-error interactions with its environment [16]. Similar
to [17], we used Q-learning to calculate collision-free paths,
but unlike it, we also used Q-learning to generate the initial
paths. Li et al. introduced a method for path planning that
combines an improved version of the Q-learning algorithm
with heuristic searching rules for mobile robots in a dynamic
environment [18]. In [19], a Q-learning-based distinct derived
learning method with cyclic error correction has been proved
effective for mobile robot navigation. The authors in [20]
improved the performance of the Q-learning algorithm with
an action selection strategy and a Q-function initialization
method, which has been applied to UAV path planning in an
antagonistic environment.

Although the trading of tasks or goals in multi-objective
games is not a new concept, existing works hardly maintain
the balance of cooperation and competition. Like in [21],
the authors set up agents in an economic game, including
trading product or capital and receiving rewards based on
performance in the economic game. They utilized Q-learning
as opposed to directly solving for the Nash Equilibrium in
order to generalize the method. In [22], Schultink et al. utilize
a hierarchy of agents at different levels of control, working
together to complete a task. This is similar to how our bidding
system rewards agents choosing to move closer to their POI
and facilitates the exchange of POIs. However, our agents
are more autonomous, meaning the bidding process cannot
select from a set of agents and allow that agent to act. The
authors in [23] used an auction mechanism, in addition to
support vector machines to assign UAVs services, optimizing
cellular coverage while balancing trust and profit potential.
Our work differs in solution technique and architecture by
simultaneously solving for path planning and point assign-
ment. An auction system based on profit potential is proposed
by Ng et al. in [24], constrained by resource and current
objectives to distribute UAVs to cells to complete federated
learning tasks. The UAVs were allowed to form cooperative
teams, choosing based on profit potential. Whereas, in our
work, we consider all the UAVs working together as a group
of individual trading agents. In [25], Duan et al. introduced
an auctioning system for UAV task assignment, taking into
account resource constraints in environments with varying
profit potential, risk, and information. A priority-based point
selection mechanism is used there before assigning them to
the UAVs. On the other hand, we consider visiting each of the
points at the earliest possible time, not assigning low priority
to any of them.

IV. PROPOSED REPLANNER FRAMEWORK

Fig. 3 shows the basic framework of the proposed RE-
PLANNER mechanism. Here, the agent uses the Q-learning
algorithm [26] to take any kind of decision regarding its move-
ment and leverages greedy economic approach for trading
POIs. The agent can take the best actions under the given
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Fig. 3. Proposed REPLANNER framework

observed, potentially noisy, and incomplete information state.
It does so by querying a table built from the result of these
action and state pairs and the consequent reward. Operating
independently of this table is an auction system that modifies
the environment in tandem with the Q-learning algorithm. In
effect, our agent acts upon two different perspectives of the
environment at the same time. The first perspective of the
environment consists of the physical locations that an agent has
to travel within the time limit to gain its rewards. The second
perspective contains the offers and bids of all the agents in the
environment. So effectively, the agent, given that it is in two
different but correlated states, must take the two most optimal
actions in these two perspectives of the environment.

The agent uses the Q-learning module for trajectory deci-
sions given its goal set. The Q-learning module takes state
information of the agent as well as the partial information
of the environment and calculates the trajectory incurring the
highest amount of reward. The agent takes action according
to the output of the Q-learning module. On the other hand,
an agent checks the feasibility of the points in its goal set
using the greedy economic choice (GEC) module to decide
on which points to visit and which to sell-off. The agents
broadcast an auction for each of their infeasible points to the
other agents that are within the broadcasting proximity. The
other agents, listening to this broadcast, use their own GEC
module to calculate the feasibility for the point of interest and
estimates an offer price for that point. They broadcast the offer
price to the selling agent, and after finding the best offer, the
selling agent transfers the point to the buying agent’s goal set.
An agent observes the environment and provides the current
position and trading state to the Q-learning module and GEC
module, respectively.

V. TECHNICAL DETAILS

We start by discussing the necessary formal models underly-
ing the proposed REPLANNER and later, we discuss the model
in detail.

A. Environment Model

We model the environment as two simultaneous partially-
observable Markov games. Markov games are a generalization



of a Markov decision process to multiple agents. A partially
observable game hides a subset of the state from the players,
usually other player’s states. Formally it consists of a tuple
(Si, Ai, Oi, Zi, Ti, R, b

(0)
i , γ), which is explained in the next

two sections. There are two primary problems, assignment of
POIs to agents and path planning for each agent to each of its
assigned POIs.

B. The Path Planning Game model

In a path planning game, agents must make a sequence of
movement decisions in order to navigate from POI to POI,
attempting to gather data before all other agents. The agents
must avoid no-fly zones and agent-agent collisions. The agents
are deployed onto a W × L ∈ N2 grid-world with width
W , and length L. POIs distributed randomly throughout with
positions given by POI := {(x1, y1), (x2, y2), ..., (xj , yj)}
where, (x, y) ∈ N2 and j is the number of POIs. Similarly no-
fly zones are given by {(x1, y1), (x2, y2), ..., (xm, ym)} where
m is the number of off-limits spaces with (x, y) ∈ N2. Agents
positions are pairs (xi, yi) where i ∈ 1, . . . , n and n is the
number of agents. A player receives a positive reward inversely
proportional to the time elapsed during the game when their
coordinates match that of some element of POI , Pl ∈ POI .
The POI is then removed from all agents’ goal sets, and no
agent can receive a reward from traveling to it. Formally, a
partially observable Markov path planning game is defined as
the following:
• Si := (pi, si) where pi ⊆ POI are the points the agent

must visit and si ∈ N2 is the agents position.
• Ai := m(si) if si+1 /∈ N where m adds or subtracts

one from the elements of si moving the agent to another
square and N is the set of girds composing a no fly zone.

• Oi consists of the agent’s state, POI and the complete-
ness status of each element of POI .

• Zi is defined implicitly based on the randomly initialized
strategies of other players.

• Ti is defined implicitly based on the actions of other
players altering POI and their own positions.

• Ri is defined by a function which compares pi to si and
a function which compares pi to s-i.

• b
(0)
i , the initial belief, is initialized randomly.

• γ, the discount factor, is set to 0.95.
The grid world is initialized with random positions for the
POIs, agents, and NFZs. It is represented by an image in which
different colors represent clear spaces, POIs, NFZs, and UAVs.
Agents are then allowed to move about in the grid world until
all POIs are visited or a set time limit is reached.

C. The Economic Game

Simple models, such as the laws of supply and demand
function to describe the aggregate behavior of self-interested
agents cooperating and competing. We attempt to emulate this
situation as a Markov game in order to exploit this optimiza-
tion process. In an economic game, agents trade objects using a
virtual currency, attempting to accumulate the greatest amount
of privately valuable objects and capital. Each round, agents
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Fig. 4. Auction architecture: a) UAV-A broadcasts the auction for the distant
point in its goal set while other UAVs listen to it and b) UAV-B determines its
profit with respect to the expense-reward associated with the point of interest
and broadcasts its offer. Later, if it wins the auction, UAV-A acknowledges its
victory. Finally, c) UAV-B pays-off UAV-A to buy that point, and accordingly,
the point is handed over.

TABLE I
LIST OF NOTATIONS

Symbol Definition
U Set of agents in the network
ui The ith agents in the network
E Environment data
Nt Number of training episodes
Pi Object list of ith agent, Pi = [pi1, pi2,pi3 ... ]
Pall List of all ”object list”s, Pall = [P1, P2, P3 ... ]
Bi List of incoming bids of ith agent
Ri Total reward of ith agent

engage in an auction, putting up an object currently in their
possession and bidding a private amount for another object at
auction. Fig. 4 represents the auction architecture followed
by the UAV agents. Here we use an auction-based on the
resources an agent is likely to spend pursuing a point. This
first price auction is secured by temporarily locking the offer
amount so that there is no incentive in lying about the bid,
forcing an agent to honestly bid its valuation of the object
while still being able to profit by selling it. As agents have
different valuations of each object, this allows for a stable
distribution of objects to emerge over successive auctions.
Accordingly there is a finite set of objects O := {oj} and



a corresponding set Wi := {ok ∈ 0| ok is owned by some
agent k} , and exchange function E is defined as:

Ei(o, Pr,A) := argmaxP (Pr,A) −→Wa ∪ {o},Wi \ {o}
where o is the object for sale, Pr is the set of offered prices,
A is the set of agents who offered prices. For example, the
first price is offered by the first agent in A and so on. Formally
an economic game is defined as the following
• Si := (Wi, ci) where Wi is the list of owned objects

as defined above, and ci ∈ R+ represents the capital an
agent has in trading.

• Ai := (oj , ok, p) where oj ∈ O is an object selected
for purchase, ok ∈ Wi is an object owned by the agent
selected for sale, and p ∈ R+ is the price proposed for
oj .

• Oi consists of the agents’ state and the objects for sale.
• Zi is based on the bids of other agents and the objects

in their possession which they decide to sell.
• Ti is based on the exchange function Ei defined above,

assigning objects to the winners of bids, and exchanging
capital between the seller and buyer of the object.

• Ri is proportional to the size of Wi and ci.
• b

(0)
i , the initial belief, is initialized randomly.

• γ, the discount factor, is set to 0.95.

Algorithm 1: Training of UAV Trajectory Planning
initialize ListBroadCast = Φ;
for each episode in Nt do

while Pall is not empty do
for each ui in U do

for each object in Pi do
if object is not completed then

ListBroadCast.append(object);

for each ui in U do
for each object in ListBroadCast do

Bi.append(Distance(ui, pi), object )

for each ui in U do
choice, distance= argmindistance(Bi);
Update Pi adding choice;
Remove choice from Pseller ;
Rseller+ = 10;
Ri− = 10;

for each ui in U do
Use Q-table to choose object from Pi to take action in

environment;
Take action;
for each object in Pi do

if object is completed then
Check object for R;
if completed by self then

Add to Ri;
Remove object from Pall;

else
if Collision or No fly zone detected then

Subtract from Ri

continue;

for each ui in U do
update Q-table;

D. Optimization problem
Time is used as a proxy to real-world quantities such

as battery life and distance traveled, as these metrics are

necessarily increasing functions of time. Thus by minimizing
mission time, we also minimize distance traveled and battery
used. We assume all UAVs are able to communicate with one
another at any given time during auction periods. They move
to an adjacent grid from their current position if the grid is
accessible, according to:

si+1 =

{
M(Pi, Ui) = Ui + di, if si+1 /∈ N
si, otherwise

Our solution focuses on maximizing the number of POIs
traveled to in the least amount of time subject to redundancy
and travel constraints. That is to say sup{(

∑
Contract∈C∗ c−

t) − T}, where W is the collection of all contracts, c is the
contract’s completion status, t is the contract’s elapsed time,
and T is the total mission time.

E. Description of the Algorithm

Finally, we introduce a novel distributed machine learning
algorithm in order to allocate targets optimally. Algorithm 1
describes the bidding, moving, and training process of the
REPLANNER framework. Table I represents the list of notations
used in this algorithm. We note that market economies can be
characterized as a distributed computation by market members
for the appropriate distribution and production of items and
that these computations can be represented as repeated games
as described above. Each UAV is controlled by an RL agent.
Its state consists of known targets and completion status; its
position is organized into a map. Its actions consist of traveling
to a point, selling and removing a point from its memory, or
buying and adding a point to its memory. When another agent
reaches a point, it receives a large reward, and the point is
removed from all other agent’s memories. Every other UAV
is then unable to bid for and gain reward by traveling to the
POI. The process of buying and selling points is done via
broadcasts and does not require any centralized authority. In
the simulation, however, it is necessarily centralized.

F. A Case Study

We initialized an environment with 20 points, set at random
locations in a 40x40 grid. Each agent is assigned contracts
randomly. Fig. 5 represents the two-dimensional space, where
the UAVs, trained with economic Q-learning (Fig. 5(a)) and
regular Q-learning (Fig. 5(b)- 5(c)), move around to explore
the environment and visit the goal points. Each colored line
is a UAV’s path throughout the 200 timesteps in the twenty-
five thousand-th episode. From Fig. 5(b), we can see a lot
of overlapping paths and a lot of distance covered. However,
none of the agents are able to complete the whole goal set
assigned to them. Only after seventy-five thousand episodes in
Fig. 5(c), all the goal sets are successfully completed, but still
with overlapping paths. On the other hand, using the economic
model in Fig. 5(a), all the agents learned to trade the initially
assigned POIs, and they display an excellent optimization of
resource utilization. There are no overlapping paths, and they
seem to cover just part of the whole map, yet completed all
the goals assigned.



(a) (b) (c)

Fig. 5. Case study of (a) Economic Q-learning after 25000 training episodes, (b) Regular Q-learning after 25000 training episodes, and (c) Regular Q-learning
after 75000 training episodes with 3 UAV agents and 20 points to visit.

Fig. 6. Simulation of the case study using AirSim.

G. Simulation

For demonstrating the effectiveness of the REPLANNER

framework in a real-world scenario, we run simulations for the
grid world case study by leveraging the AirSim [9] simulator
from Microsoft, which is built on Epic Games’ Unreal Engine.
The simulator provides a physics engine for simulating real-
world phenomena, including wind. In the simulation, we
assign fixed heights for the UAVs and POIs, whereas the NFZs
are simulated as red pillars (Fig. 6). The intelligent behavior
of the UAVs in the simulation (publicly available at [10])
confirms that even without considering the complex environ-
ment parameters, the REPLANNER framework generalized the
trajectory efficiently and could potentially control real UAVs.

VI. EVALUATION SETUP

This section presents the experimental setup and neces-
sary evaluation metrics to assess our proposed REPLANNER

framework’s performance. We implement the framework con-
sidering a simple two-dimensional environment with time
constraints for the UAV agents. The experiments are conducted
on Dell Precision 7920 Tower workstation with Intel Xeon
Silver 4110 CPU @3.0GHz, 64 GB memory, 4 GB NVIDIA
Quadro P1000 GPU.

TABLE II
Q-LEARNING MODULE ARCHITECTURE

Parameter Name Model hyperparameters
Model Q-learning
Exploration paeameter (ε) 0.5
Epsilon decay 0.9999
Discount factor 0.95
Episodes (Each iteration) 25,000
Steps (Each episode) 200
Learning rate (α) 0.1

A. Environment Objects and Actions

The environment contains three types of objects: the UAV
agents, the POIs to be visited, and the NFZs to be avoided.
Each type of object is initialized in the environment at a unique
position to ensure a POI doesn’t end up at the same location
as an NFZ. The agent can take four diagonal movement
actions for visiting the POIs depending on the appropriate
(maximum or minimum) q-value for that state-action pair.
Also, for exploratory behavior, the agent can randomly take
action towards the horizontal or diagonal direction. So a total
of 8 actions can be performed for movement. Now, for the
trading mechanism, an agent can take two types of actions:
sell or buy a POI. The agent decides to sell a point if the
monetary value of the resource requirement is more than the
potential reward to be achieved. Later, an agent decides to buy
a POI if the potential reward is more than the total buying price
and resource invested in visiting that point.

B. Architecture of the Model

Our model begins with defining the various hyper-
parameters mentioned in Table II. For the very first episode,
the q-table is initialized with random values. For a 50×50 grid
environment, the q-table has more than 96 million cells, each
representing an action-value pair, which means more than 96
million q-values to be tuned throughout the learning process.

C. Evaluation Metrics

In this subsection, we define the metrics used to evaluate
the REPLANNER ’s performance.
Total Time Required (TTR): The efficiency of the protocol
can be measured with respect to the total time required for all
the agents to complete their goal-set. This is not the summation
of total travel time of all the agents, rather the difference
between the starting time and time when all the agents are
done with their goal-set. Thus the TTR can be defined as the
following:

TTR = (final time-stamp)− (initial time-stamp)

Goal Completeness (GC): GC is defined by the percentage of
the goal set points that have already been visited or processed,
depending on the context. Thus the GC can be defined as the
following:

GC =
# of points visited

# of total points in the goal set
× 100
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Fig. 7. Average time required to complete goal set after (a) 100 training
episodes and (b) 200 training episodes, for different UAV swarm size with
Q-learning and economic Q-learning, visiting 20 POIs.
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Fig. 8. Percentage of goal set completion with respect to number of steps
taken for UAV swarm size of 3, 6 and 9 having (a) 15 points to visit and (b) 25
points to visit, with REPLANNER framework after 1000 training episodes.

Distance Traveled (DT): DT is defined by the summation of
total distance the agents had to travel to complete their goal
sets. Ideally, the smaller is value is, the more efficient the
trajectory was. Thus the DT can be defined as the following:

DT =
∑
i∈N

di

Here, di refers to the distance that i-th agent had to travel
to complete its goal set, and N refers to the total number of
agents.
Episode Average Reward (EAR): Average of the rewards
accumulated by all the UAV agents in a particular episode.
The reward increases for a correct decision, whereas wrong
decisions incur negative points. Therefore, the reward is a
number indicating how good the model’s prediction was in
an unknown environment.

EAR =
1

N
∑
i∈N

ri

Here, ri refers to the incurred reward of the i-th agent at the
end of a particular episode, and N refers to the total number
of agents participating in that episode.

VII. EVALUATION RESULT AND DISCUSSION

In this section, we evaluate and analyze the REPLANNER’s
performance with respect to the four different metrics men-
tioned in the previous section.

A. Time for Completing Goal Set

In this part, we specifically focus on comparing the eco-
nomic and non-economic reinforcement learning with respect
to the time required for completing the goal of the whole

UAV swarm. We try with different number of episodes in a
training iteration and show the trend for changing the required
time for both models. From Fig. 7, it is evident that economic
Q-learning is performing better for each of the swarm sizes
and remains better than the normal Q-learning with increasing
training episodes. In Fig. 7(a), it is seen that REPLANNER

performs exceptionally well with each agent having a larger
goal set, that is, way more POIs to visit. Another point to
be noticed is, with 200 training episodes in Fig. 7(b), the Q-
learning is getting close to the economic one, but still, it is
significantly less efficient than the economic Q-learning.

B. Percentage of Completion for Different Swarm Sizes

In this part, we evaluate the performance of the REPLANNER

model by observing the percentage of completion of the tasks.
We necessarily keep the number of training episodes constant,
which is 1000, and try with different number of UAVs. We
calculate the completion of tasks with respect to the steps
needed. Also, we try with different number of points to visit
to see how the swarm behavior changes with a larger goal set.
From Fig. 8(a), it is seen that after 75 steps, swarm size of 9
almost completed 90 percent of the goal set, where swarm size
of 6 and 3 completed close to 70 and 55 percent, respectively.
As per Fig. 8(b), it can be observed that with the increase
of points in the environment, the completion percentage goes
down. Also, in Fig. 8(b), it is seen that during steps 75 through
125, swarm size 6 got really close to the efficiency of swarm
size of 9, most likely due to the exploration behavior.

C. Optimal Travelling Distance for completing the goal set

Through Fig. 9, we estimate the efficiency of the RE-
PLANNER framework in optimizing the traveling distance for
completing the goal set. Ideally, the more efficient model
will require a lesser distance to travel to complete the goal
set, effectively optimizing the usage of resources and time.
Here, we compare the Q-learning and economic Q-learning
with different number of points to visit and show the distance
they require to visit those points. Additionally, we try with
different number of UAV swarm size in Fig. 9(a), Fig. 9(b) and
observe the behavior alterations. Although for all the different
swarm sizes, economic Q-learning is doing better than the
non-economic one, an improvement trend can be seen for the
non-economic Q-learning with a larger swarm size. From this
behavior, it can be inferred that the REPLANNER performs way
better than the non-economic one with a significantly larger
number of points to visit.

D. Reward Accumulation Visuals

Finally, we evaluate the efficiency of the REPLANNER frame-
work by comparing the attained reward of the economic Q-
learning with the achieved reward of the regular Q-learning,
as shown in Fig. 10. Theoretically, this metric is the most im-
portant one as RL optimizes for the maximum reward. Despite
the fact that our algorithm outperforms the standard in UAV-
specific metrics, reward accumulation shows the difference in
optimizing the power of the two algorithms as seen Fig. 10(a),
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Fig. 9. Average distance required to be travelled to visit all the goal points
with swarm size of (a) 3 UAV agents, and (b) 6 UAV agents, trained with
regular and economic Q-learning for 100 episodes.
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Fig. 10. EAR incurred by 3 UAV agents to visit 20 POIs in 24000 episodes
after (a) 1 training iteration, and (b) 2 training iterations, with Q-learning and
economic Q-learning.

10(b). As such, these are the most impressive results of our
work, providing evidence that performance can be increased
even further.

VIII. CONCLUSION

In this paper, we have introduced a reinforcement learn-
ing algorithm coupled with an economic trading theory to
distribute points and create paths for a multi-agent UAV
surveillance problem. Our evaluation results have shown that
our approach outperforms the standard Q-learning method,
allowing for UAVs to delegate tasks to other agents and
learn cooperative strategies in a multi-agent context. More
specifically, with as few as three UAVs, we have observed
a significant decrease of 33% in the distance needed to travel
to all POIs. As the number of POIs has increased relative to
that of UAVs, the economic algorithm showed increasingly
efficient paths. The overall performance has continued to
scale as UAVs are added to the swarm, the best shown by
a 200% greater reward than the Q-learning. The UAVs have
been able to avoid collisions with the swarm’s path plans.
Through the auctions, the UAVs have avoided unnecessary
competition and been able to focus on sections of the map.
This feature shows the swarm strategizing as a whole without
direct communication, with the auction operating over the
Q-learning algorithm. Our future works will focus on the
refinement of the training process and the design of the reward
function. The generality of the environment as a Markov game
allows for an extension of this method to other multi-agent
problems. In addition, we will focus on the use of deep
reinforcement learning to enable the integration of broader
contexts and further refinement of the auction process.
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